Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 115(10): 2135-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26026261

RESUMO

AIM: To examine the isolated and combined effects of severe hypoxia and a mild thermal challenge on performance, physiological measures, cognition, and serum brain-derived neurotrophic factor (BDNF). METHODS: Nine trained male athletes (age: 23 ± 3 years; W max: 333 ± 45 W) completed four experimental trials (CON: 15 °C/0 m, ALT: 15 °C/3800 m, TEMP: 25 °C/0 m, ALT + TEMP: 25 °C/3800 m) in a double blind, randomized, cross-over design. Subjects cycled for 30 min in a self-paced test starting at 75% W max, their goal was to 'perform as much work as possible in 30 min.' Power output, heart rate, blood lactate, pulse oximetry, core and skin temperature, thermal sensation, ratings of perceived exertion, reaction time (RT), and BDNF were assessed. RESULTS: The amount of work produced in 30 min was reduced by temperature (F(1,8) = 7.1; p = 0.029; 360 ± 19 kJ in 15 °C; 344 ± 18 kJ in 25 °C) and altitude (F(1,8) = 94.2; p < 0.001; 427 ± 24 kJ at sea level; 277 ± 15 kJ at altitude), yet there was no interaction effect. Altitude increased mean RT (F(1,8) = 8.0; p = 0.022; 281.9 ± 9.4 ms at sea level; 289.3 ± 10.0 ms at altitude) and RT variability (F(1,8) = 8.5; p = 0.020; 44 ± 3 ms at sea level: 50 ± 4 ms at altitude). Exercise increased BDNF (F(1,8) = 15.2; p = 0.005; PRE: 21.8 ± 1.3 ng/mL; POST: 26.5 ± 2.1 ng/mL). CONCLUSION: Exercise capacity was significantly reduced due to an increase in altitude (3800 m; -34.3%) or a 10 °C increase in ambient temperature (-3.2%). The combination of both stressors showed to be additive (-38.0 %). Altitude induced an increase in RT and RT variability presenting a deterioration in cognitive functioning during acute hypoxia. Exercise significantly increased BDNF, but no effect of altitude on the BDNF concentration was observed.


Assuntos
Doença da Altitude/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/sangue , Tolerância ao Exercício , Exercício Físico , Temperatura Alta , Adulto , Doença da Altitude/sangue , Limiar Anaeróbio , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Distribuição Aleatória , Tempo de Reação
2.
Artigo em Inglês | MEDLINE | ID: mdl-35564787

RESUMO

Background: This study aimed to observe the effects of a fast acute ascent to simulated high altitudes on cardiovascular function both in the main arteries and in peripheral circulation. Methods: We examined 17 healthy volunteers, between 18 and 50 years old, at sea level, at 3842 m of hypobaric hypoxia and after return to sea level. Cardiac output (CO) was measured with Doppler transthoracic echocardiography. Oxygen delivery was estimated as the product of CO and peripheral oxygen saturation (SpO2). The brachial artery's flow-mediated dilation (FMD) was measured with the ultrasound method. Post-occlusion reactive hyperemia (PORH) was assessed by digital plethysmography. Results: During altitude stay, peripheral oxygen saturation decreased (84.9 ± 4.2% of pre-ascent values; p < 0.001). None of the volunteers presented any hypoxia-related symptoms. Nevertheless, an increase in cardiac output (143.2 ± 36.2% of pre-ascent values, p < 0.001) and oxygen delivery index (120.6 ± 28.4% of pre-ascent values; p > 0.05) was observed. FMD decreased (97.3 ± 4.5% of pre-ascent values; p < 0.05) and PORH did not change throughout the whole experiment. Τhe observed changes disappeared after return to sea level, and normoxia re-ensued. Conclusions: Acute exposure to hypobaric hypoxia resulted in decreased oxygen saturation and increased compensatory heart rate, cardiac output and oxygen delivery. Pre-occlusion vascular diameters increase probably due to the reduction in systemic vascular resistance preventing flow-mediated dilation from increasing. Mean Arterial Pressure possibly decrease for the same reason without altering post-occlusive reactive hyperemia throughout the whole experiment, which shows that compensation mechanisms that increase oxygen delivery are effective.


Assuntos
Hiperemia , Adolescente , Adulto , Altitude , Artéria Braquial/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Hipóxia , Pessoa de Meia-Idade , Oxigênio , Adulto Jovem
3.
Mil Med ; 182(9): e1969-e1975, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28885964

RESUMO

Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. METHODS: Thirty-six healthy subjects (Neck Disability Index < 5) volunteered to participate. Neck position sense was evaluated using a three-dimensional motion analyzer. To create the environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. FINDINGS: Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity.


Assuntos
Vértebras Cervicais/inervação , Propriocepção/fisiologia , Adulto , Vértebras Cervicais/anatomia & histologia , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA