Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Horm Behav ; 160: 105491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340412

RESUMO

Trees release Herbivore-Induced Plant Volatiles (HIPVs) into the air in response to damage inflicted by insects. It is known that songbirds use those compounds to locate their prey, but more recently the idea emerged that songbirds could also use those odours as cues in their reproductive decisions, as early spring HIPVs may contain information about the seasonal timing and abundance of insects. We exposed pre-breeding great tits (Parus major) to the odours of caterpillar-infested trees under controlled conditions, and monitored reproduction (timing of egg laying, number of eggs, egg size) and two of its main hormonal drivers (testosterone and 17ß-estradiol in males and females, respectively). We found that females exposed to HIPVs did not advance their laying dates, nor laid larger clutches, or larger eggs compared to control females. 17ß-estradiol concentrations in females were also similar between experimental and control birds. However, males exposed to HIPVs had higher testosterone concentrations during the egg-laying period. Our study supports the hypothesis that insectivorous songbirds are able to detect minute amounts of plant odours. The sole manipulation of plant scents was not sufficient to lure females into a higher reproductive investment, but males increased their reproductive effort in response to a novel source of information for seasonal breeding birds.


Assuntos
Passeriformes , Aves Canoras , Feminino , Animais , Masculino , Testosterona , Árvores , Odorantes , Melhoramento Vegetal , Passeriformes/fisiologia , Aves Canoras/fisiologia , Reprodução/fisiologia , Insetos , Estradiol
2.
Biol Lett ; 20(7): 20240217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955225

RESUMO

Whether avian migrants can adapt to their changing world depends on the relative importance of genetic and environmental variation for the timing and direction of migration. In the classic series of field experiments on avian migration, A. C. Perdeck discovered that translocated juveniles failed to reach goal areas, whereas translocated adults performed 'true-goal navigation'. His translocations of > 14 000 common starlings (Sturnus vulgaris) suggested that genetic mechanisms guide juveniles into a population-specific direction, i.e. 'vector navigation'. However, alternative explanations involving social learning after release in juveniles could not be excluded. By adding historical data from translocation sites, data that was unavailable in Perdeck's days, and by integrated analyses including the original data, we could not explain juvenile migrations from possible social information upon release. Despite their highly social behaviour, our findings are consistent with the idea that juvenile starlings follow inherited information and independently reach their winter quarters. Similar to more solitarily migrating songbirds, starlings would require genetic change to adjust the migration route in response to global change.


Assuntos
Migração Animal , Comportamento Social , Estorninhos , Animais , Estorninhos/fisiologia , Estorninhos/genética , Estações do Ano
3.
Oecologia ; 204(4): 743-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521882

RESUMO

To accurately predict species' phenology under climate change, we need to gain a detailed mechanistic understanding of how different environmental cues interact to produce the seasonal timing response. In the winter moth (Operophtera brumata), seasonal timing of egg hatching is strongly affected by ambient temperature and has been under strong climate change-induced selection over the past 25 years. However, it is unclear whether photoperiod received at the egg stage also influences timing of egg hatching. Here, we investigated the relative contribution of photoperiod and temperature in regulating winter moth egg development using two split-brood experiments. We experimentally shifted the photoperiod eggs received by 2-4 weeks compared to the actual calendar date and measured the timing of egg hatching, both at a constant temperature and in combination with two naturally changing temperature treatments - mimicking a cold and a warm year. We found an eight-fold larger effect of temperature compared to photoperiod on egg development time. Moreover, the very small photoperiod effects we found were outweighed by both between- and within-clutch variation in egg development time. Thus, we conclude that photoperiod received at the egg stage does likely not play a substantial role in regulating the seasonal timing of egg hatching in the winter moth. These insights into the regulatory mechanism of seasonal timing could have important implications for predicting insect climate change adaptation, as we might expect different targets of selection depending on the relative contribution of different environmental cues.


Assuntos
Mariposas , Fotoperíodo , Estações do Ano , Temperatura , Animais , Mariposas/fisiologia , Mudança Climática , Óvulo
4.
Proc Biol Sci ; 290(2009): 20231474, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848060

RESUMO

Climate change has led to changes in the strength of directional selection on seasonal timing. Understanding the causes and consequences of these changes is crucial to predict the impact of climate change. But are observed patterns in one population generalizable to others, and can spatial variation in selection be explained by environmental variation among populations? We used long-term data (1955-2022) on blue and great tits co-occurring in four locations across the Netherlands to assess inter-population variation in temporal patterns of selection on laying date. To analyse selection, we combine reproduction and adult survival into a joined fitness measure. We found distinct spatial variation in temporal patterns of selection which overall acted towards earlier laying, and which was due to selection through reproduction rather than through survival. The underlying relationships between temperature, bird and caterpillar phenology were however the same across populations, and the spatial variation in selection patterns is thus caused by spatial variation in the temperatures and other habitat characteristics to which birds and caterpillars respond. This underlines that climate change is not necessarily equally affecting populations, but that we can understand this spatial variation, which enables us to predict climate change effects on selection for other populations.


Assuntos
Lepidópteros , Aves Canoras , Animais , Mudança Climática , Estações do Ano , Reprodução , Seleção Genética
5.
Proc Biol Sci ; 290(2005): 20230414, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37608720

RESUMO

Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994-2021) on relative winter moth population densities at four locations in The Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.


Assuntos
Mariposas , Crescimento Demográfico , Animais , Estações do Ano , Dinâmica Populacional , Mudança Climática
6.
Proc Biol Sci ; 290(2002): 20230511, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403509

RESUMO

The slow-fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow-fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow-fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow-fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow-fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.


Assuntos
Características de História de Vida , Reprodução , Humanos , Animais , Mamíferos , Aves
7.
J Anim Ecol ; 92(1): 7-15, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366942

RESUMO

Natural selection can only occur if individuals differ in fitness. For this reason, the variance in relative fitness has been equated with the 'opportunity for selection' ( I ), which has a long, albeit somewhat controversial, history. In this paper we discuss the use/misuse of I and related metrics in evolutionary ecology. The opportunity is only realised if some fraction of I is caused by trait variation. Thus, I > 0 does not imply that selection is occurring, as sometimes erroneously assumed, because all fitness variation could be independent of phenotype. The selection intensity on any given trait cannot exceed I , but this upper limit will never be reached because (a) stochastic factors always affect fitness, and (b) there might be multiple traits under selection. The expected magnitude of the stochastic component of I is negatively correlated with mean fitness. Uncertainty in realised I is also larger when mean fitness or population/sample size are low. Variation in I across time or space thus can be dominated (or solely driven) by variation in the strength of demographic stochasticity. We illustrate these points using simulations and empirical data from a population study on great tits Parus major. Our analysis shows that the scope for fecundity selection in the great tits is substantially higher when using annual number of recruits as the fitness measure, rather than fledglings or eggs, even after adjusting for the dependence of I on mean fitness. This suggests nonrandom survival of juveniles across families between life stages. Indeed, previous work on this population has shown that offspring recruitment is often nonrandom with respect to clutch size and laying date of parents, for example. We conclude that one cannot make direct inferences about selection based on fitness data alone. However, examining variation in ∆ I F (the opportunity for fecundity selection adjusted for mean fitness) across life stages, years or environments can offer clues as to when/where fecundity selection might be strongest, which can be useful for research planning and experimental design.


Assuntos
Passeriformes , Reprodução , Animais , Ecologia , Fertilidade , Seleção Genética
8.
Proc Natl Acad Sci U S A ; 117(50): 31969-31978, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257553

RESUMO

Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.


Assuntos
Aves/fisiologia , Mamíferos/fisiologia , Modelos Genéticos , Reprodução/genética , Seleção Genética/fisiologia , Animais , Evolução Biológica , Conjuntos de Dados como Assunto , Aptidão Genética , Fatores de Tempo
9.
Ecol Lett ; 25(7): 1640-1654, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610546

RESUMO

Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species' life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.


Assuntos
Crescimento Demográfico , Reprodução , Animais , Evolução Biológica , Aves , Mamíferos , Dinâmica Populacional
10.
Mol Ecol ; 31(22): 5795-5812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161402

RESUMO

Climate change will strongly affect the developmental timing of insects, as their development rate depends largely on ambient temperature. However, we know little about the genetic mechanisms underlying the temperature sensitivity of embryonic development in insects. We investigated embryonic development rate in the winter moth (Operophtera brumata), a species with egg dormancy which has been under selection due to climate change. We used RNA sequencing to investigate which genes are involved in the regulation of winter moth embryonic development rate in response to temperature. Over the course of development, we sampled eggs before and after an experimental change in ambient temperature, including two early development weeks when the temperature sensitivity of eggs is low and two late development weeks when temperature sensitivity is high. We found temperature-responsive genes that responded in a similar way across development, as well as genes with a temperature response specific to a particular development week. Moreover, we identified genes whose temperature effect size changed around the switch in temperature sensitivity of development rate. Interesting candidate genes for regulating the temperature sensitivity of egg development rate included genes involved in histone modification, hormonal signalling, nervous system development and circadian clock genes. The diverse sets of temperature-responsive genes we found here indicate that there are many potential targets of selection to change the temperature sensitivity of embryonic development rate. Identifying for which of these genes there is genetic variation in wild insect populations will give insight into their adaptive potential in the face of climate change.


Assuntos
Relógios Circadianos , Mariposas , Animais , Mariposas/genética , Temperatura , Estações do Ano , Relógios Circadianos/genética , Insetos , Desenvolvimento Embrionário/genética
11.
BMC Genomics ; 22(1): 36, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413102

RESUMO

BACKGROUND: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. RESULTS: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. CONCLUSION: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.


Assuntos
Passeriformes , Aves Canoras , Animais , Ilhas de CpG , Metilação de DNA , Feminino , Passeriformes/genética , RNA , Reprodução , Aves Canoras/genética
12.
Proc Biol Sci ; 288(1963): 20211337, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814747

RESUMO

Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit (Parus major), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.


Assuntos
Aquecimento Global , Passeriformes , Animais , Mudança Climática , Reprodução , Estações do Ano , Temperatura
13.
Mol Ecol ; 30(15): 3645-3659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453134

RESUMO

Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.


Assuntos
Passeriformes , Aves Canoras , Animais , Metilação de DNA , Epigênese Genética , Feminino , Reprodução/genética , Estações do Ano , Aves Canoras/genética
14.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378047

RESUMO

Climate change is rapidly altering the environment and many species will need to genetically adapt their seasonal timing to keep up with these changes. Insect development rate is largely influenced by temperature, but we know little about the mechanisms underlying the temperature sensitivity of development. Here, we investigate seasonal timing of egg hatching in the winter moth, one of the few species which has been found to genetically adapt to climate change, likely through selection on temperature sensitivity of egg development rate. To study when during development winter moth embryos are most sensitive to changes in ambient temperature, we gave eggs an increase or decrease in temperature at different moments during their development. We measured their developmental progression and time of egg hatching, and used fluorescence microscopy to construct a timeline of embryonic development for the winter moth. We found that egg development rate responded more strongly to temperature once embryos were in the fully extended germband stage. This is the phylotypic stage at which all insect embryos have developed a rudimentary nervous system. Furthermore, at this stage, timing of ecdysone signaling determines developmental progression, which could act as an environment dependent gateway. Intriguingly, this may suggest that, from the phylotypic stage onward, insect embryos can start to integrate internal and environmental stimuli to actively regulate important developmental processes. As we found evidence that there is genetic variation for temperature sensitivity of egg development rate in our study population, such regulation could be a target of selection imposed by climate change.


Assuntos
Mariposas , Adaptação Fisiológica , Animais , Humanos , Sistema Nervoso , Estações do Ano , Temperatura
15.
Mol Ecol ; 29(3): 485-501, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846173

RESUMO

Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.


Assuntos
Borrelia/genética , Ixodes/microbiologia , Doença de Lyme/microbiologia , Animais , Doenças das Aves/microbiologia , Europa (Continente) , Humanos , Tipagem de Sequências Multilocus/métodos , Aves Canoras/microbiologia
16.
J Evol Biol ; 33(3): 352-366, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746497

RESUMO

Phenotypic plasticity is a central topic in ecology and evolution. Individuals may differ in the degree of plasticity (individual-by-environment interaction (I × E)), which has implications for the capacity of populations to respond to selection. Random regression models (RRMs) are a popular tool to study I × E in behavioural or life-history traits, yet evidence for I × E is mixed, differing between species, populations, and even between studies on the same population. One important source of discrepancies between studies is the treatment of heterogeneity in residual variance (heteroscedasticity). To date, there seems to be no collective awareness among ecologists of its influence on the estimation of I × E or a consensus on how to best model it. We performed RRMs with differing residual variance structures on simulated data with varying degrees of heteroscedasticity and plasticity, sample size and environmental variability to test how RRMs would perform under each scenario. The residual structure in the RRMs affected the precision of estimates of simulated I × E as well as statistical power, with substantial lack of precision and high false-positive rates when sample size, environmental variability and plasticity were small. We show that model comparison using information criteria can be used to choose among residual structures and reinforce this point by analysis of real data of two study populations of great tits (Parus major). We provide guidelines that can be used by biologists studying I × E that, ultimately, should lead to a reduction in bias in the literature concerning the statistical evidence and the reported magnitude of variation in plasticity.


Assuntos
Ecologia/métodos , Análise de Regressão , Animais , Simulação por Computador , Passeriformes/fisiologia , Tamanho da Amostra
17.
J Exp Biol ; 223(Pt 8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32205357

RESUMO

Phenotypic plasticity is an important mechanism by which an individual can adapt its seasonal timing to predictable, short-term environmental changes by using predictive cues. Identification of these cues is crucial to forecast the response of species to long-term environmental change and to study their potential to adapt. Individual great tits (Parus major) start reproduction early under warmer conditions in the wild, but whether this effect is causal is not well known. We housed 36 pairs of great tits in climate-controlled aviaries and 40 pairs in outdoor aviaries, where they bred under artificial contrasting temperature treatments or in semi-natural conditions, respectively, for two consecutive years, using birds from lines selected for early and late egg laying. We thus obtained laying dates in two different thermal environments for each female. Females bred earlier under warmer conditions in climate-controlled aviaries, but not in outdoor aviaries. The latter was inconsistent with laying dates from our wild population. Further, early selection line females initiated egg laying consistently ∼9 days earlier than late selection line females in outdoor aviaries, but we found no difference in the degree of plasticity (i.e. the sensitivity to temperature) in laying date between selection lines. Because we found that temperature causally affects laying date, climate change will lead to earlier laying. This advancement is, however, unlikely to be sufficient, thereby leading to selection for earlier laying. Our results suggest that natural selection may lead to a change in mean phenotype, but not to a change in the sensitivity of laying dates to temperature.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Plásticos , Reprodução , Estações do Ano , Temperatura
18.
Ecol Appl ; 30(3): e02062, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863538

RESUMO

The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the Great Tit (Parus major), using a replicated experimental set-up where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light vs. the dark treatment, and similar trends for red light. However, there was a strong interannual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.


Assuntos
Passeriformes , Reprodução , Animais , Oviposição , Estações do Ano , Temperatura
19.
J Anim Ecol ; 89(3): 745-756, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691954

RESUMO

Global climate change has sparked a vast research effort into the demographic and evolutionary consequences of mismatches between consumer and resource phenology. Many studies have used the difference in peak dates to quantify phenological synchrony (match in dates, MD), but this approach has been suggested to be inconclusive, since it does not incorporate the temporal overlap between the phenological distributions (match in overlap, MO). We used 24 years of detailed data on the phenology of a predator-prey system, the great tit (Parus major) and the main food for its nestlings, caterpillars, to estimate MD and MO at the population and brood levels. We compared the performance of both metrics on two key demographic parameters: offspring recruitment probability and selection on the timing of reproduction. Although MD and MO correlated quadratically as expected, MD was a better predictor for both offspring recruitment and selection on timing than MO. We argue-and verify through simulations-that this is because quantifying MO has to be based on nontrivial, difficult-to-verify assumptions that likely render MO too inaccurate as a proxy for food availability in practice. Our results have important implications for the allocation of research efforts in long-term population studies in highly seasonal environments.


Assuntos
Mudança Climática , Passeriformes , Animais , Evolução Biológica , Reprodução , Estações do Ano
20.
BMC Genomics ; 20(1): 693, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477015

RESUMO

BACKGROUND: Seasonal timing of breeding is a life history trait with major fitness consequences but the genetic basis of the physiological mechanism underlying it, and how gene expression is affected by date and temperature, is not well known. In order to study this, we measured patterns of gene expression over different time points in three different tissues of the hypothalamic-pituitary-gonadal-liver axis, and investigated specifically how temperature affects this axis during breeding. We studied female great tits (Parus major) from lines artificially selected for early and late timing of breeding that were housed in two contrasting temperature environments in climate-controlled aviaries. We collected hypothalamus, liver and ovary samples at three different time points (before and after onset of egg-laying). For each tissue, we sequenced whole transcriptomes of 12 pools (n = 3 females) to analyse gene expression. RESULTS: Birds from the selection lines differed in expression especially for one gene with clear reproductive functions, zona pellucida glycoprotein 4 (ZP4), which has also been shown to be under selection in these lines. Genes were differentially expressed at different time points in all tissues and most of the differentially expressed genes between the two temperature treatments were found in the liver. We identified a set of hub genes from all the tissues which showed high association to hormonal functions, suggesting that they have a core function in timing of breeding. We also found ample differentially expressed genes with largely unknown functions in birds. CONCLUSIONS: We found differentially expressed genes associated with selection line and temperature treatment. Interestingly, the latter mainly in the liver suggesting that temperature effects on egg-laying date may happen down-stream in the physiological pathway. These findings, as well as our datasets, will further the knowledge of the mechanisms of tissue-specific avian seasonality in the future.


Assuntos
Regulação da Expressão Gênica , Reprodução/genética , Aves Canoras/genética , Animais , Cruzamento , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Fígado/metabolismo , Especificidade de Órgãos , Ovário/metabolismo , Reprodução/fisiologia , Aves Canoras/metabolismo , Temperatura , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA