Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Behav Pharmacol ; 33(8): 513-526, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094044

RESUMO

Parkinson's disease is a neurodegenerative disease, the etiology of which remains unknown, but some likely causes include oxidative stress, mitochondrial dysfunction and neuroinflammation. Peroxisome-proliferator-activated receptor (PPAR) agonists have been studied in animal models of Parkinson's disease and have shown neuroprotective effects. In this study, we aimed to (1) confirm the neuroprotective effects of PPAR-alpha agonist fenofibrate. To this end, male rats received fenofibrate (100 mg/kg) orally for 15 days, 5 days before the intraperitoneal injections of rotenone (2.5 mg/kg for 10 days). After finishing the treatment with rotenone and fenofibrate, animals were subjected to the open field, the forced swim test and the two-way active avoidance task. Subsequently, rats were euthanized for measurement of dopamine and metabolites levels in the striatum and quantification of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (SNpc). In addition, we aimed to (2) evaluate the neuroprotective effects of fenofibrate on the accumulation of α-synuclein aggregates. Here, rats were treated for 5 days with fenofibrate continuing for over 28 days with rotenone. Then, animals were perfused for immunohistochemistry analysis of α-synuclein. The results showed that fenofibrate reduced depressive-like behavior and memory impairment induced by rotenone. Moreover, fenofibrate diminished the depletion of striatal dopamine and protected against dopaminergic neuronal death in the SNpc. Likewise, the administration of fenofibrate attenuated the aggregation of α-synuclein in the SNpc and striatum in the rotenone-lesioned rats. Our study confirmed that fenofibrate exerted neuroprotective effects because parkinsonian rats exhibited reduced behavioral, neurochemical and immunohistochemical changes, and importantly, a lower number of α-synuclein aggregates.


Assuntos
Fenofibrato , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Masculino , Ratos , Animais , Rotenona/farmacologia , Doença de Parkinson/metabolismo , Fenofibrato/farmacologia , alfa-Sinucleína , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Dopamina/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Substância Negra
2.
Neurobiol Learn Mem ; 109: 27-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291572

RESUMO

This study examined the effects of bilateral excitotoxic lesions of the nucleus accumbens core (NAc-co), dorsomedial striatum (DMS) or dorsolateral striatum (DLS) of rats on the learning and extinction of Pavlovian and instrumental components of conditioned avoidance responses (CARs). None of the lesions caused sensorimotor deficits that could affect locomotion. Lesions of the NAc-co, but not DMS or DLS, decreased unconditioned and conditioned freezing. The NAc-co and DLS lesioned rats learned the 2-way active avoidance task more slowly. These results suggest: (i) CARs depend on both Pavlovian and instrumental learning; (ii) learning the Pavlovian component of CARs depends on the NAc-co; learning the instrumental component of CARs depends on the DLS, NAc and DMS; (iii) although the NAc-co is also needed for learning the instrumental component, it is not clear whether it plays a role in learning the instrumental component per se or if it simply allows learning of the Pavlovian component which is a pre-condition for learning the instrumental component; (iv) we did not find evidence that the DMS and DLS play the same roles in habit and goal-directed aspects of the instrumental component of CARs as observed in appetitive motivated instrumental responding.


Assuntos
Aprendizagem da Esquiva/fisiologia , Corpo Estriado/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Núcleo Accumbens/fisiologia , Animais , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Masculino , Ratos , Ratos Wistar
3.
J Neural Transm (Vienna) ; 121(6): 671-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24463888

RESUMO

Beyond the current hypothesis of depression, several new biological substrates have been proposed for this disorder. The present study investigated whether the anti-inflammatory drugs celecoxib and piroxicam have antidepressant activity in animal models of depression. After acute administration, we observed antidepressant-like effects of celecoxib (10 mg/kg) and piroxicam (10 mg/kg) in the modified forced swim test in rats. Piroxicam increased serotonin and norepinephrine levels in the hippocampus. Prolonged (21-day) treatment with celecoxib (10 mg/kg) and piroxicam (10 mg/kg) rescued sucrose preference in a chronic mild stress model of depression. Additionally, the chronic mild stress-induced reduction of hippocampal glutathione was prevented by treatment with celecoxib and piroxicam. Superoxide dismutase in the hippocampus was increased after chronic mild stress compared with the non-stressed saline group. The non-stressed celecoxib and piroxicam groups and stressed piroxicam group exhibited an increase in hippocampal superoxide dismutase activity compared with the stressed saline group. Lipid hydroperoxide was increased in the stressed group treated with vehicle and non-stressed group treated with imipramine but not in the stressed groups treated with celecoxib and piroxicam. These results suggest that the antidepressant-like effects of anti-inflammatory drugs might be attributable to enhanced antioxidant defenses and attenuated oxidative stress in the hippocampus.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Piroxicam/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antidepressivos/farmacologia , Celecoxib , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Privação de Alimentos , Glutationa/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Norepinefrina/metabolismo , Piroxicam/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Estresse Fisiológico/efeitos dos fármacos , Sacarose/administração & dosagem , Sulfonamidas/farmacologia , Superóxido Dismutase/metabolismo , Natação/psicologia , Fatores de Tempo , Privação de Água
4.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36926592

RESUMO

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

5.
Brain Res ; 1799: 148175, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436686

RESUMO

Alzheimer's disease (AD) is of multifactorial origin, and still presents several gaps regarding its development and progression. Disorders of the cholinergic system are well known to be involved in the pathogenesis of AD, characterized by increased acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and decreased acetyltransferase (ChAT) enzymatic activities. Late onset AD (LOAD) animal model induced by intracerebroventricular injection of streptozotocin (icv-STZ) showed promising results in this context, due to the similarity with the pathophysiology of human LOAD. Thus, this study aimed to assess the long-term effects of icv-STZ on the cholinergic system, through the measuring of AChE and BChE enzymatic activities in hippocampus, prefrontal cortex and liver of animals euthanized 30 and 120-days after the icv-STZ. Regarding the cholinergic response to icv-STZ, the 30-days and 120-days STZ-induced rats exhibit decreased AChE and BChE activities only in the hippocampus. The cognitive deficit was more consistent in the 30-days post icv-STZ animals, as was the weight loss. This is the first study to investigate the long-term effects (more than 60 days) of the icv-STZ on AChE and BChE activities, and our results, as well as those of a recent study, suggest that the cholinergic system may not be compromised by icv-STZ, at least in the long term, which means that this model may not be the best model for studying the cholinergic system in AD or that it is informative only for a short period.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Humanos , Animais , Doença de Alzheimer/metabolismo , Estreptozocina/farmacologia , Ratos Wistar , Acetilcolinesterase/metabolismo , Butirilcolinesterase , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Colinérgicos/farmacologia , Aprendizagem em Labirinto
6.
Neurotox Res ; 40(5): 1440-1454, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029454

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.


Assuntos
Doença de Alzheimer , Diterpenos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Antioxidantes/farmacologia , Cálcio , Modelos Animais de Doenças , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Proteína Glial Fibrilar Ácida , Lactonas/efeitos adversos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Doenças Neuroinflamatórias , Agregados Proteicos , Ratos , Ratos Wistar , Estreptozocina/toxicidade
7.
Neurochem Res ; 35(10): 1620-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20582568

RESUMO

The current investigation compared intranigral lipopolysaccharide (LPS), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) administrations, in the light of neurochemical, behavioral and endogenous antioxidant glutathione alterations. All the results were collected 1, 3 and 7 days after the lesions. LPS produced a delayed reduction of striatal dopamine, whereas homovanillic acid was drastically increased at the first time-point. Comparatively, MPTP promoted dopamine reduction 3 and 7 days with increase of homovanillic acid. Whilst, 6-OHDA generated initial increase of dopamine and homovanillic acid followed by subsequent decrease of this neurotransmitter accompanied by reductions of dopamine metabolites at the same periods. Furthermore, nigral glutathione demonstrated to be a far more sensitive target for LPS than for MPTP or 6-OHDA. Behavioral data indicated impairments induced by MPTP, 6-OHDA but not LPS. In conclusion, it is suggested that intranigral LPS can provide new insights about neuroinflammation, simulating features of the pre-motor phase of Parkinson's disease.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Glutationa/metabolismo , Lipopolissacarídeos/farmacologia , Oxidopamina , Doença de Parkinson/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/psicologia , Ratos , Ratos Wistar , Substância Negra , Fatores de Tempo
8.
J Alzheimers Dis Rep ; 4(1): 353-363, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163896

RESUMO

BACKGROUND: It has been studied that nutrition can influence Alzheimer's disease (AD) onset and progression. Some studies on rodents using intraventricular streptozotocin (STZ) injection showed that this toxin changes cerebral glucose metabolism and insulin signaling pathways. OBJECTIVE: The aim of the present study was to evaluate whether a nutritional formulation could reduce cognitive impairment in STZ-induced animals. METHODS: The rats were randomly divided into two groups: sham and STZ. The STZ group received a single bilateral STZ-ICV injection (1 mg/kg). The sham group received a bilateral ICV injection of 0.9% saline solution. The animals were treated with AZ1 formulation (Instanth® NEO, Prodiet Medical Nutrition) (1 g/kg, PO) or its vehicle (saline solution) for 30 days, once a day starting one day after the stereotaxic surgery (n = 6-10). The rats were evaluated using the open field test to evaluate locomotor activity at day 27 after surgery. Cognitive performance was evaluated at day 28 using the object recognition test and the spatial version of the Y-maze test. At day 30, the rats were anesthetized with chloral hydrate (400 mg/kg, i.p) and euthanized in order to evaluate IBA1 in the hippocampus. The differences were analyzed using one-way ANOVA with Bonferroni's or Kruskal Wallis with Dunn's post-hoc test. RESULTS/CONCLUSION: STZ-lesioned rats present memory impairment besides the increased microglial activation. The treatment with AZ1 formulation reversed the memory impairment observed in the object recognition test and Y-maze and also reduced IBA1 in CA1 and DG.

9.
ACS Omega ; 5(7): 3504-3512, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118165

RESUMO

The beneficial effect of polyphenols and magnesium(II) against oxidative stress motivated our research group to explore the antioxidant activity of phenMgIso, an aqueous soluble magnesium(II) complex containing 1,10-phenanthroline (phen) and isovanillic acid (Iso) as ligands. Combined electrospray ionization-mass spectrometry and DOSY-NMR techniques identified two complexes in methanolic solution: hexacoordinated [Mg(phen)2(Iso)]+ and tetracoordinated [Mg(phen)(Iso)]+. The cyclic voltammogram of phenMgIso in the anodic region showed a cyclic process that interrupts the isovanillic acid degradation, probably by stabilization of the corresponding phenoxyl radical via complexation with Mg(II), which is interesting for antioxidant applications. phenMgIso competes with 2,2,6,6-tetramethylpiperidine by 1O2 with IC50(1O2) = 15 µg m-1 and with nitrotetrazolium blue chloride by superoxide ions (IC50(O2 •-) = 3.6 µg mL-1). Exposure of both zebrafish (2 mg L-1) and wistar male rats (3 mg kg-1 day-1 dose for 21 days) to phenMgIso does not cause mortality or visual changes compared with the respective control groups, thus phenMgIso could be considered safe under the conditions of this study. Moreover, no significant changes in comparison to both control groups were observed in the biochemical parameters on the brain-acetylcholinesterase activity, digestive tract enzyme catalase, and glutathione-S-transferase. Conversely, the performance of superoxide dismutase activity in wistar male rats increased in the presence of a complex, resulting in enhanced capacity of rats for superoxide radical enzymatic scavenging. The synergistic action of phenMgIso may be explained by the strong electrostatic interaction between Mg(II) and the O,O(phenolate) group, which makes the Iso ligand easier to oxidize and deprotonate, generating a cyclic stable species under oxidative conditions.

10.
J Neural Transm Suppl ; (73): 135-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20411774

RESUMO

Clinical characteristics of Parkinson's disease (PD) are the result of the degeneration of the neurons of the substantia nigra pars compacta (SNpc). Several mechanisms are implicated in the degeneration of nigrostriatal neurons such as oxidative stress, mitochondrial dysfunction, protein misfolding, disturbances of dopamine (DA) metabolism and transport, neuroinflammation, and necrosis/apoptosis. The literature widely explores the neurotoxic models elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA). Because of the models, it is known that basal ganglia, particularly substantia nigra, have been related to a diversity of functions, from motor to sleep regulation. Nevertheless, a current debate concerning the role of DA on the sleep-wake cycle is in progress. In summary, it is suggested that the dopaminergic system is implicated in the physiology of sleep, with particular regard to the influence of the SNpc neurons. The understanding of the functioning and connectivity of the SNpc neurons has become fundamental to discovering the neurobiology of these neurons.


Assuntos
Atividade Motora/fisiologia , Neurobiologia/métodos , Sono/fisiologia , Substância Negra/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Modelos Biológicos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia
11.
J Neural Transm Suppl ; (73): 259-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20411784

RESUMO

The potential neuroprotective or neurotoxic effects of 3,4-dihydroxyphenylalanine (L-DOPA) are yet to be understood. We examined the behavioral, immunohistochemical, tyrosine hydroxylase (TH) expression and neurochemical parameters after an intranigral administration of L-DOPA (10 microM) in rats. L-DOPA elicited a 30.5% reduction in dopaminergic neurons, while 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 microg microL(-1)) produced a 53.6% reduction. A combined infusion of MPTP and L-DOPA generated a 42% reduction of nigral neurons. Motor parameters revealed that both the MPTP and L-DOPA groups presented impairments; however, the concomitant administration evoked a partial restorative effect. In addition, MPTP and L-DOPA separately induced reductions of TH protein expression within the substantia nigra. In contrast, the coadministration of MPTP and L-DOPA did not demonstrate such difference. The striatal levels of dopamine were reduced after MPTP or L-DOPA, with an increased turnover only for the MPTP group. In view of such results, it seems reasonable to suggest that L-DOPA could potentially produce dopaminergic neurotoxicity.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Neurotoxinas , Transtornos Parkinsonianos , Substância Negra/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Contagem de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Homovanílico/metabolismo , Masculino , Movimento/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Behav Brain Res ; 371: 111981, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31141725

RESUMO

Anxiety in Parkinson's disease may represent a physiological reaction to the development of other symptoms during disease progression. However, evidence suggests that the incidence of anxiety disorders in Parkinson's disease may be related to neurochemical changes. The present study addresses the question whether dopamine, noradrenaline and serotonin levels in brain structures related to Parkinson's disease and anxiety are responsible for anxiety-like behavior by using an animal model of parkinsonism based in the bilateral injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in the substantia nigra pars compacta. For this, one day after the injection of 6-OHDA, the animals exhibited hypolocomotion and a lower frequency of rearings in the open field test, which was spontaneously reversed on the last day of motor assessment (day 21). The 6-OHDA injection also induced anxiety-like behavior in the elevated plus maze and contextual fear conditioning test (day 21 and 24, respectively). Neurochemical analysis showed a reduction of dopamine and norepinephrine levels in the striatum, prefrontal cortex, and amygdala. In addition, while the serotonin levels were reduced in the striatum and prefrontal cortex, it was increased in the amygdala. The present study indicates that the model of 6-OHDA-induced parkinsonism in rats induced an anxiety-like behavior that may be related to a dysregulation of neurotransmitter systems in brain areas involved with anxiety such as the amygdala, prefrontal cortex and striatum.


Assuntos
Ansiedade/metabolismo , Neurotransmissores/metabolismo , Oxidopamina/farmacologia , Adrenérgicos , Tonsila do Cerebelo/metabolismo , Animais , Transtornos de Ansiedade/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Masculino , Norepinefrina/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Serotonina/metabolismo , Substância Negra/metabolismo
13.
Behav Brain Res ; 188(2): 406-11, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18201777

RESUMO

Dopamine (DA) has, as of late, become singled out from the profusion of other neurotransmitters as what could be called a key substance, in the regulation of the sleep-wake states. We have hypothesized that dopaminergic D(2) receptor blockage induced by haloperidol could generate a reduction or even an ablation of rapid eye movement (REM) sleep. Otherwise, the use of the selective D(2) agonist, piribedil, could potentiate REM sleep. Electrophysiological findings demonstrate that D(2) blockage produced a dramatic reduction of REM sleep during the rebound (REB) period after 96 h of REM sleep deprivation (RSD). This reduction of REM sleep was accompanied by an increment in SWS, which is possibly accounted for the observed increase in the sleep efficiency. Conversely, our findings also demonstrate that the administration of piribedil did not generate additional increase of REM sleep. Additionally, D(2) receptors were found down-regulated, in the haloperidol group, after RSD, and subsequently up-regulated after REB group, contrasting to the D(1) down-regulation at the same period. In this sense, the current data indicate a participation of the D(2) receptor for REM sleep regulation and consequently in the REM sleep/SWS balance. Herein, we propose that the mechanism underlying the striatal D(2) up-regulation is due to an effect as consequence of RSD which originally produces selective D(2) supersensitivity, and after its period probably generates a surge in D(2) expression. In conclusion we report a particular action of the dopaminergic neurotransmission in REM sleep relying on D(2) activation.


Assuntos
Receptores de Dopamina D2/fisiologia , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Sono/fisiologia , Análise de Variância , Animais , Comportamento Animal , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Haloperidol/farmacologia , Masculino , Piribedil/farmacologia , Ratos , Receptores de Dopamina D1/metabolismo , Sono/efeitos dos fármacos , Sono REM/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Vigília/efeitos dos fármacos , Vigília/fisiologia
14.
J Pharm Pharmacol ; 70(8): 1059-1068, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29766510

RESUMO

OBJECTIVES: To determine whether the drug saxagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor which is utilized for the treatment of Diabetes Mellitus, has neuroprotective effects in the animal model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA) in rats. METHODS: Male Wistar rats (weighing 280-300 g) received a bilateral infusion of 6-OHDA in the substantia nigra. Twenty-four hours later, they were treated with saxagliptin (1 mg/kg, p.o) once daily, for 21 days. The motor function was evaluated using the open field and rotarod (RT) tests. In addition, cognition was assessed with the novel object recognition test (ORT). After the evaluation of the behavioural tests, the animals were transcardially perfused to perform immunohistochemistry staining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc). KEY FINDINGS: Saxagliptin impaired the memory of animals in the sham group. CONCLUSIONS: Saxagliptin treatment did not exhibit neuroprotection and it did not improve the cognitive and motor deficits in the 6-OHDA model of PD. Interestingly, when saxagliptin was administered to the sham animals, a cognitive decline was observed. Therefore, this drug should be investigated as a possible treatment for PTSD.


Assuntos
Adamantano/análogos & derivados , Comportamento Animal/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Adamantano/administração & dosagem , Adamantano/uso terapêutico , Animais , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Doença de Parkinson Secundária/fisiopatologia , Ratos Wistar , Resultado do Tratamento
15.
Physiol Behav ; 188: 298-310, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458117

RESUMO

Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model.


Assuntos
Acetamidas/uso terapêutico , Ritmo Circadiano/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipnóticos e Sedativos/uso terapêutico , Locomoção/efeitos dos fármacos , Animais , Depressão/induzido quimicamente , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Masculino , Oxidopamina/toxicidade , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Sacarose/administração & dosagem , Simpatolíticos/toxicidade , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Mol Neurobiol ; 55(5): 4280-4296, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28623617

RESUMO

Early impairments in cerebral glucose metabolism and insulin signaling pathways may participate in the pathogenesis of the sporadic form of Alzheimer's disease (sAD). Intracerebroventricular (ICV) injections of low doses of streptozotocin (STZ) are used to mimic sAD and study these alterations in rodents. Streptozotocin causes impairments in insulin signaling and has been reported to trigger several alterations in the brain, such as oxidative stress, neuroinflammation, and dysfunctions in adult neurogenesis, which may be involved in cognitive decline and are features of human AD. The aim of the present study was to assess the influence of neuroinflammation on the process of adult neurogenesis and consequent cognitive deficits in the STZ-ICV model of sAD in Wistar rats. Streptozotocin caused an acute and persistent neuroinflammatory response, reflected by reactive microgliosis and astrogliosis in periventricular areas and the dorsal hippocampus, accompanied by a marked reduction of the proliferation of neural stem cells in the dentate gyrus of the hippocampus and subventricular zone. Streptozotocin also reduced the survival, differentiation, and maturation of newborn neurons, resulting in impairments in short-term and long-term spatial memory. These results support the hypothesis that neuroinflammation has a detrimental effect on neurogenesis, and both neuroinflammation and impairments in neurogenesis contribute to cognitive deficits in the STZ-ICV model of sAD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Inflamação/patologia , Transtornos da Memória/fisiopatologia , Neurogênese , Memória Espacial , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Comportamento Animal , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Medo , Injeções Intraventriculares , Antígeno Ki-67/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Microglia/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos Wistar , Estreptozocina
17.
Eur J Pharmacol ; 560(2-3): 163-75, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17320073

RESUMO

The present study investigated the effects of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib (Bextratrade mark) in the prevention of motor and cognitive impairments observed in rats after an intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a model of the early phase of Parkinson's disease. The treatment with parecoxib (10 mg/kg) administered prior to the surgery and daily (2 mg/kg) for the subsequent 21 days, prevented the MPTP-treated rats from presenting decreased locomotor and exploratory behavior, increased immobility, and impairment while performing the cued version of the Morris water maze. Furthermore, parecoxib treatment also significantly prevented the reduction of tyrosine hydroxylase protein expression in the substantia nigra (7, 14 and 21 days after surgery), and in the striatum (14 and 21 days after surgery) as immunodetected by western blotting. These results strongly suggest that parecoxib exerts a neuroprotective effect on motor, tyrosine hydroxylase expression, and cognitive functions as it prevents their impairments within the confines of this animal model of the early phase of Parkinson's disease.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Isoxazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/enzimologia , Masculino , Aprendizagem em Labirinto , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/análise
18.
Behav Brain Res ; 335: 41-54, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28801114

RESUMO

Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis.


Assuntos
Curcumina/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Demência/tratamento farmacológico , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar
19.
Brain Res ; 1101(1): 117-25, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16781689

RESUMO

The present study investigated the effects on general activity, COX-2 and TH protein expression of intranigral neurotoxins LPS, MPTP or 6-OHDA infusion in rats. Results indicate that LPS produced an increase in locomotion frequency (3 and 7 days after surgery) and a strong up-regulation of COX-2 protein 16 and 24 h after surgery, as observed in the substantia nigra (SN). The MPTP model generated impairment in locomotion frequency 24 h after surgery. Besides, MPTP caused a marked up-regulation in COX-2 protein observed in the SN 16 h after surgery. Moreover, the 6-OHDA model produced severe motor impairment indicated by the decrease in locomotion (24 h) and rearing (24 h, 3 and 7 days) frequencies and also an increase in latency (24 h, 3 and 7 days) and immobility (24 h and 3 days) times. We also demonstrated an up-regulation of COX-2, which occurred in the SN 4-24 h after surgery. TH protein did not appear to be reduced in the striatum in the groups lesioned with the neurotoxins. In contrast, the TH content of SN was significantly reduced in the groups lesioned with the very same neurotoxins. For all the models analyzed, we observed no statistical differences in the expression of COX-2 in the striatum along the time-points. The results of the present study suggest that COX-2 induction patterns differ in function of the neurotoxin tested. Such time-dependent induction has been found to be relatively constant, a fact of great significance considering the importance of the neuroinflammatory process in Parkinson's disease.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Transtornos Parkinsonianos/enzimologia , Substância Negra/enzimologia , Análise de Variância , Animais , Comportamento Animal , Western Blotting/métodos , Ciclo-Oxigenase 1/metabolismo , Expressão Gênica/efeitos dos fármacos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Intoxicação por MPTP , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Eur J Pharmacol ; 535(1-3): 199-207, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16546164

RESUMO

There are a number of reasons for believing that nitric oxide participates in motor control in the striatum. Therefore, effects of neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) were studied on the reserpine model of Parkinson's disease in Swiss and C57BL/6 mice using the open-field test. Mice received reserpine (1 mg/kg administered intraperitoneally). A significant hypolocomotion was observed 24 h and 48 h after reserpine injection. The treatment with 7-nitroindazole (25 mg/kg, administered intraperitoneally, 30 min after reserpine) attenuated reserpine-induced hypolocomotion 24 h and 48 h after the treatment in Swiss mice, but not completely in C57BL/6 mice. These results suggest that nitric oxide functions as an intercellular messenger in motor circuits in the brain. Moreover, our data suggests that the comparison of such mouse strains may provide information on genetic basis for strain differences in different sensitivity to these drugs.


Assuntos
Indazóis/farmacologia , Atividade Motora/efeitos dos fármacos , Reserpina/farmacologia , Inibidores da Captação Adrenérgica/administração & dosagem , Inibidores da Captação Adrenérgica/farmacologia , Animais , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Indazóis/administração & dosagem , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/antagonistas & inibidores , Reserpina/administração & dosagem , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA