Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 34(12): 2712-2718.e3, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38806055

RESUMO

New World porcupines (Erethizontinae) originated in South America and dispersed into North America as part of the Great American Biotic Interchange (GABI) 3-4 million years ago.1 Extant prehensile-tailed porcupines (Coendou) today live in tropical forests of Central and South America.2,3 In contrast, North American porcupines (Erethizon dorsatum) are thought to be ecologically adapted to higher-latitude temperate forests, with a larger body, shorter tail, and diet that includes bark.4,5,6,7 Limited fossils8,9,10,11,12,13 have hindered our understanding of the timing of this ecological differentiation relative to intercontinental dispersal during the GABI and expansion into temperate habitats.14,15,16,17,18 Here, we describe functionally important features of the skeleton of the extinct Erethizon poyeri, the oldest nearly complete porcupine skeleton documented from North America, found in the early Pleistocene of Florida. It differs from extant E. dorsatum in having a long, prehensile tail, grasping foot, and lacking dental specializations for bark gnawing, similar to tropical Coendou. Results from phylogenetic analysis suggest that the more arboreal characteristics found in E. poyeri are ancestral for erethizontines. Only after it expanded into temperate, Nearctic habitats did Erethizon acquire the characteristic features that it is known for today. When combined with molecular estimates of divergence times, results suggest that Erethizon was ecologically similar to a larger species of Coendou when it crossed the Isthmus of Panama by the early Pleistocene. It is likely that the range of this more tropically adapted form was limited to a continuous forested biome that extended from South America through the Gulf Coast.


Assuntos
Fósseis , Porcos-Espinhos , Porcos-Espinhos/anatomia & histologia , Animais , Fósseis/anatomia & histologia , América do Sul , Cauda/anatomia & histologia , Extinção Biológica , América do Norte , Evolução Biológica , Ecossistema
2.
Anat Rec (Hoboken) ; 306(6): 1452-1464, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36094350

RESUMO

Softshell turtles (Trionychidae) display characteristic pits and ridges, or "sculpturing," on the bony carapace. Variation in sculpturing pattern may be useful in classifying fossilized shell fragments. Although past attempts could discern qualitative differences in certain best-case scenarios, many early taxonomic uses of sculpturing traits have been reevaluated as unreliable in the face of intraspecific variation. The potential of sculpturing to contain consistently reliable, quantitative, taxonomically informative traits remains underexplored. Here, we revisit this idea by quantifying trionychid shell patterning with topographic measurement techniques more commonly applied to nonhomologous quantification of mammalian teeth and geographic surface topography. We assess potential sources of variation and accuracy of these metrics for species identification. Carapaces of extant specimens used in this study included members of the species Apalone ferox, Apalone spinifera, and Amyda cartilaginea and were obtained from the herpetology collections of the Florida Museum of Natural History. 3D scans of shells were systematically sampled to create digital "fragments." These fragments were quantified using three topographic measurements: Dirichlet Normal Energy (DNE), Relief Index (RFI), and Orientation Patch Count Rotated (OPCR). A nested MANOVA suggests there is significant variation at the species, individual, and carapace location levels of analysis. Linear discriminant analysis correctly predicts a sample's species identity from DNE, RFI, and OPCR 75.2% of the time. These promising results indicate that topographic measures may provide a method for identifying shell fragments that are currently identifiable only as Trionychidae indet. Future work should explore this approach in additional species and account for ontogenetic changes.


Assuntos
Dente , Tartarugas , Animais , Répteis , Tartarugas/anatomia & histologia , Cabeça , Mamíferos
3.
Evolution ; 76(9): 2032-2048, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872621

RESUMO

In neutral models of quantitative trait evolution, both genetic and phenotypic divergence scale as random walks, producing a correlation between the two measures. However, complexity in the genotype-phenotype map may alter the correlation between genotypic and phenotypic divergence, even when both are evolving neutrally or nearly so. Understanding this correlation between phenotypic and genetic variation is critical for accurately interpreting the fossil record. This study compares the geographic structure and scaling of morphological variation of the shape of the first lower molar of 77 individuals of the northern grasshopper mouse Onychomys leucogaster to genome-wide SNP variation in the same sample. We found strong genetic structure but weak or absent morphological structure indicating that the scaling of each type of variation is decoupled from one another. Low PST values relative to FST values are consistent with a lack of morphological divergence in contrast to genetic divergence between groups. This lack of phenotypic structure and the presence of notable within-sample phenotypic variance are consistent with uniform selection or constraints on molar shape across a wide geographic and environmental range. Over time, this kind of decoupling may result in patterns of phenotypic stasis masking underlying genetic patterns.


Assuntos
Deriva Genética , Variação Genética , Animais , Fósseis , Camundongos , Repetições de Microssatélites , Fenótipo , Seleção Genética
4.
PLoS One ; 13(3): e0193437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513709

RESUMO

Characterization of morphological variation in the shells of extant Eastern Box Turtles, Terrapene carolina, provides a baseline for comparison to fossil populations. It also provides an example of the difficulties inherent to recognizing intraspecific diversity in the fossil record. The degree to which variation in fossils of T. carolina can be accommodated by extant variation in the species has been disagreed upon for over eighty years. Using morphometric analyses of the carapace, I address the relationship between modern and fossil T. carolina in terms of sexual dimorphism, geographic and subspecific variation, and allometric variation. Modern T. carolina display weak male-biased sexual size dimorphism. Sexual shape dimorphism cannot be reliably detected in the fossil record. Rather than a four-part subspecific division, patterns of geographic variation are more consistent with clinal variation between various regions in the species distribution. Allometric patterns are qualitatively similar to those documented in other emydid turtles and explain a significant amount of shape variation. When allometric patterns are accounted for, Holocene specimens are not significantly different from modern specimens. In contrast, several geologically older specimens have significantly different carapace shape with no modern analogue. Those large, fossilized specimens represent extinct variation occupying novel portions of morphospace. This study highlights the need for additional documentation of modern osteological variation that can be used to test hypotheses of intraspecific evolution in the fossil record.


Assuntos
Exoesqueleto/anatomia & histologia , Fósseis , Tartarugas/anatomia & histologia , Análise de Variância , Distribuição Animal , Exoesqueleto/crescimento & desenvolvimento , Animais , Variação Biológica Individual , Extinção Biológica , Feminino , Masculino , Análise de Componente Principal , Caracteres Sexuais , Especificidade da Espécie , Tartarugas/crescimento & desenvolvimento , Estados Unidos
5.
Ecol Evol ; 7(14): 5041-5055, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770045

RESUMO

Accurate, quantitative characterization of complex shapes is recognized as a key methodological challenge in biology. Recent development of automated three-dimensional geometric morphometric protocols (auto3dgm) provides a promising set of tools to help address this challenge. While auto3dgm has been shown to be useful in characterizing variation across clades of morphologically very distinct mammals, it has not been adequately tested in more problematic cases where pseudolandmark placement error potentially confounds interpretation of true shape variation. Here, we tested the sensitivity of auto3dgm to the degree of variation and various parameterization settings using a simulation and three microCT datasets that characterize mammal tooth crown morphology as biological examples. The microCT datasets vary in degree of apparent morphological differentiation, with two that include grossly similar morphospecies and one that includes two laboratory strains of a single species. Resulting alignments are highly sensitive to the number of pseudolandmarks used to quantify shapes. The degree to which the surfaces were downsampled and the apparent degree of morphological differentiation across the dataset also influenced alignment repeatability. We show that previous critiques of auto3dgm were based on poorly parameterized alignments and suggest that sample-specific sensitivity analyses should be added to any research protocol including auto3dgm. Auto3dgm is a useful tool for studying samples when pseudolandmark placement error is small relative to the true differences between specimens. This method therefore represents a promising avenue forward in morphometric studies at a wide range of scales, from samples that differ by a single genetic locus to samples that represent multiple phylogenetically diverse clades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA