Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 91(3): 1009-22, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742794

RESUMO

Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABA(A)Rs); they mediate both phasic and tonic inhibition in the brain and are the principle sites of action for anticonvulsant, anxiolytic, and sedative-hypnotic agents that include benzodiazepines, barbiturates, neurosteroids, and some general anesthetics. GABA(A)Rs are heteropentameric ligand-gated ion channels that are found concentrated at inhibitory postsynaptic sites where they mediate phasic inhibition and at extrasynaptic sites where they mediate tonic inhibition. The efficacy of inhibition and thus neuronal excitability is critically dependent on the accumulation of specific GABA(A)R subtypes at inhibitory synapses. Here we evaluate how neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites. We then go on to examine the impact that these processes have on the strength of synaptic inhibition and behavior.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Sinapses/fisiologia , Animais , Membrana Celular/metabolismo , Endocitose , Exocitose , Humanos , Mamíferos , Estrutura Molecular , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Receptores de GABA-A/química
2.
J Neurosci ; 33(39): 15567-77, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068823

RESUMO

Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABA(A)R γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Depressão/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Depressão/genética , Heterozigoto , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Mutação de Sentido Incorreto , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Fosforilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de GABA-A/genética , Tirosina/genética , Tirosina/metabolismo
3.
Mov Disord ; 29(12): 1476-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112864

RESUMO

Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação/genética , RNA Interferente Pequeno/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Exossomos/fisiologia , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/genética , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/patologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Proteínas Virais/administração & dosagem , Proteínas Virais/genética
4.
JAAD Int ; 11: 224-232, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37179539

RESUMO

Background: The pathophysiological processes underlying the phenotypic spectrum of severe forms of epidermolysis bullosa (EB) are complex and poorly understood. Objective: To use burden mapping to explore relationships between primary pathomechanisms and secondary clinical manifestations in severe forms of EB (junctional and dystrophic EB [JEB/DEB]) and highlight strengths and weaknesses in evidence regarding the contribution of different pathways. Methods: Literature searches were performed to identify evidence regarding the pathophysiological and clinical aspects of JEB/DEB. Identified publications and clinical experience were used to construct burden maps to visually communicate plausible connections and their relative importance by subtype. Results: Our findings suggest that most of the clinical consequences of JEB/DEB may result from an abnormal state and/or faulty skin remodeling driven by a vicious cycle of delayed wound healing, predominantly mediated through inflammation. The quantity and quality of evidence varies by individual manifestations and disease subtype. Limitations: The burden maps are provisional hypotheses requiring further validation and are limited by the published evidence base and subjectivity in clinical opinion. Conclusions: Delayed wound healing appears to be a key driver of the burden of JEB/DEB. Further studies are warranted to understand the role of inflammatory mediators and accelerated wound healing in patient management.

5.
Proc Natl Acad Sci U S A ; 106(30): 12500-5, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19617557

RESUMO

GABA(A) receptors (GABA(A)Rs), the principal sites of synaptic inhibition in the brain, are dynamic entities on the neuronal cell surface, but the role their membrane trafficking plays in shaping neuronal activity remains obscure. Here, we examined this by using mutant receptor beta3 subunits (beta3S408/9A), which have reduced binding to the clathrin adaptor protein-2, a critical regulator of GABA(A)R endocytosis. Neurons expressing beta3S408/9A subunits exhibited increases in the number and size of inhibitory synapses, together with enhanced inhibitory synaptic transmission due to reduced GABA(A)R endocytosis. Furthermore, neurons expressing beta3S408/9A subunits had deficits in the number of mature spines and reduced accumulation of postsynaptic density protein-95 at excitatory synapses. This deficit in spine maturity was reversed by pharmacological blockade of GABA(A)Rs. Therefore, regulating the efficacy of synaptic inhibition by modulating GABA(A)R membrane trafficking may play a critical role in regulating spine maturity with significant implications for synaptic plasticity together with behavior.


Assuntos
Membrana Celular/metabolismo , Espinhas Dendríticas/fisiologia , Endocitose , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Microscopia Confocal , Mutação , Inibição Neural/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores de GABA-A/genética
6.
Proc Natl Acad Sci U S A ; 106(47): 20039-44, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19903874

RESUMO

Fast synaptic inhibition in the brain is largely mediated by gamma-aminobutyric acid receptors (GABA(A)R). While the pharmacological manipulation of GABA(A)R function by therapeutic agents, such as benzodiazepines can have profound effects on neuronal excitation and behavior, the endogenous mechanisms neurons use to regulate the efficacy of synaptic inhibition and their impact on behavior remains poorly understood. To address this issue, we created a knock-in mouse in which tyrosine phosphorylation of the GABA(A)Rs gamma2 subunit, a posttranslational modification that is critical for their functional modulation, has been ablated. These animals exhibited enhanced GABA(A)R accumulation at postsynaptic inhibitory synaptic specializations on pyramidal neurons within the CA3 subdomain of the hippocampus, primarily due to aberrant trafficking within the endocytic pathway. This enhanced inhibition correlated with a specific deficit in spatial object recognition, a behavioral paradigm dependent upon CA3. Thus, phospho-dependent regulation of GABA(A)R function involving just two tyrosine residues in the gamma2 subunit provides an input-specific mechanism that not only regulates the efficacy of synaptic inhibition, but has behavioral consequences.


Assuntos
Hipocampo/metabolismo , Memória/fisiologia , Receptores de GABA-A/metabolismo , Comportamento Espacial/fisiologia , Tirosina/metabolismo , Animais , Técnicas de Introdução de Genes , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Técnicas de Patch-Clamp , Fosforilação , Receptores de GABA-A/genética
7.
J Biol Chem ; 285(53): 41795-805, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20940303

RESUMO

Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4ß2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the ß3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.


Assuntos
Proteína Quinase C/metabolismo , Receptores de GABA-A/química , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Fosforilação , Serina/química
8.
J Neurosci ; 28(2): 376-84, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18184780

RESUMO

Status epilepticus (SE) is a progressive and often lethal human disorder characterized by continuous or rapidly repeating seizures. Of major significance in the pathology of SE are deficits in the functional expression of GABA(A) receptors (GABA(A)Rs), the major sites of fast synaptic inhibition in the brain. We demonstrate that SE selectively decreases the phosphorylation of GABA(A)Rs on serine residues 408/9 (S408/9) in the beta3 subunit by intimately associated protein kinase C isoforms. Dephosphorylation of S408/9 unmasks a basic patch-binding motif for the clathrin adaptor AP2, enhancing the endocytosis of selected GABA(A)R subtypes from the plasma membrane during SE. In agreement with this, enhancing S408/9 phosphorylation or selectively blocking the binding of the beta3 subunit to AP2 increased GABA(A)R cell surface expression levels and restored the efficacy of synaptic inhibition in SE. Thus, enhancing phosphorylation of GABA(A)Rs or selectively blocking their interaction with AP2 may provide novel therapeutic strategies to ameliorate SE.


Assuntos
Proteína Quinase C/metabolismo , Receptores de GABA-A/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Animais , Biotinilação/métodos , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/patologia , Imunoprecipitação , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Dibutirato de 12,13-Forbol/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Pilocarpina , Subunidades Proteicas/metabolismo , Serina/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Fatores de Tempo
9.
Biochem Soc Trans ; 37(Pt 6): 1355-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909275

RESUMO

GABA(A)Rs [GABA (gamma-aminobutyric acid) type-A receptors] are heteropentameric chloride-selective ligand-gated ion channels that mediate fast inhibition in the brain and are key therapeutic targets for benzodiazepines, barbiturates, neurosteroids and general anaesthetics. In the brain, most of the benzodiazepine-sensitive synaptic receptor subtypes are assembled from alpha(1-3), beta(1-3) and gamma(2) subunits. Although it is evident that the pharmacological manipulation of GABA(A)R function can have profound effects on behaviour, the endogenous mechanisms that neurons use to promote sustained changes in the efficacy of neuronal inhibition remain to be documented. It is increasingly clear that GABA(A)Rs undergo significant rates of constitutive endocytosis and regulate recycling processes that can determine the efficacy of synaptic inhibition. Their endocytosis is regulated via the direct binding of specific endocytosis motifs within the intracellular domains of receptor beta(1-3) and gamma(2) subunits to the clathrin adaptor protein AP2 (adaptor protein 2). These binding motifs contain major sites of both serine and tyrosine phosphorylation within GABA(A)Rs. Their phosphorylation can have dramatic effects on binding to AP2. In the present review, we evaluate the role that these phospho-dependent interactions play in regulating the construction of inhibitory synapses, efficacy of neuronal inhibition and neuronal structure.


Assuntos
Endocitose/fisiologia , Inibição Neural/fisiologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Humanos , Fosforilação , Isoformas de Proteínas/metabolismo
10.
Pain ; 85(3): 433-441, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10781916

RESUMO

Nociceptin (orphanin FQ) is the endogenous agonist of the opioid receptor-like (ORL-1) receptor. The actions of this peptide have been studied extensively at a number of sites with diverse actions being reported. Here, in a rat model of peripheral inflammation, we examine the effects of nociceptin on the responses of dorsal horn neurones when applied directly to the spinal cord and, in separate studies, into the peripheral receptive fields in the hindpaw of the halothane anaesthetized rat. As changes in the receptor density and expression of the message for nociceptin have been reported after inflammation we have compared these actions to previously reported effects in normal animals. The dose-dependent inhibitory actions of nociceptin on C-fibre evoked responses and input (measures of presumed pre-synaptic excitability) are increased 3-4 h after inflammation whereas its inhibitory effects on post-synaptic mechanisms (wind-up) remain unchanged. These inhibitory effects were partly reversible by high doses of naloxone. This increased potency of nociceptin after inflammation is consistent with an increased receptor density in the superficial spinal cord. In contrast, the peripheral administration of nociceptin produced dose-dependent excitations of dorsal horn neurones and a degree of sensitization to mechanical stimuli. This peripheral action was unchanged after inflammation. These diverse site-dependent actions of nociceptin further emphasize the complexities of this novel opioid system.


Assuntos
Inflamação/fisiopatologia , Peptídeos Opioides/farmacologia , Sistema Nervoso Periférico/efeitos dos fármacos , Receptores Opioides/agonistas , Medula Espinal/efeitos dos fármacos , Animais , Carragenina , Relação Dose-Resposta a Droga , Eletrofisiologia , Potenciais Evocados/efeitos dos fármacos , Inflamação/induzido quimicamente , Injeções Espinhais , Fibras Nervosas/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Peptídeos Opioides/administração & dosagem , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides/efeitos dos fármacos , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA