Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2148): 20190152, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079579

RESUMO

The physical processes, which drive powerful solar eruptions, play an important role in our understanding of the Sun-Earth connection. In this Special Issue, we firstly discuss how magnetic fields emerge from the solar interior to the solar surface, to build up active regions, which commonly host large-scale coronal disturbances, such as coronal mass ejections (CMEs). Then, we discuss the physical processes associated with the driving and triggering of these eruptions, the propagation of the large-scale magnetic disturbances through interplanetary space and the interaction of CMEs with Earth's magnetic field. The acceleration mechanisms for the solar energetic particles related to explosive phenomena (e.g. flares and/or CMEs) in the solar corona are also discussed. The main aim of this Issue, therefore, is to encapsulate the present state-of-the-art in research related to the genesis of solar eruptions and their space-weather implications. This article is part of the theme issue 'Solar eruptions and their space weather impact'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2148): 20180095, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079581

RESUMO

Solar energetic particles are an integral part of the physical processes related with space weather. We present a review for the acceleration mechanisms related to the explosive phenomena (flares and/or coronal mass ejections, CMEs) inside the solar corona. For more than 40 years, the main two-dimensional cartoon representing our understanding of the explosive phenomena inside the solar corona remained almost unchanged. The acceleration mechanisms related to solar flares and CMEs also remained unchanged and were part of the same cartoon. In this review, we revise the standard cartoon and present evidence from recent global magnetohydrodynamic simulations that support the argument that explosive phenomena will lead to the spontaneous formation of current sheets in different parts of the erupting magnetic structure. The evolution of the large-scale current sheets and their fragmentation will lead to strong turbulence and turbulent reconnection during solar flares and turbulent shocks. In other words, the acceleration mechanism in flares and CME-driven shocks may be the same, and their difference will be the overall magnetic topology, the ambient plasma parameters, and the duration of the unstable driver. This article is part of the theme issue 'Solar eruptions and their space weather impact'.

3.
Phys Rev Lett ; 119(4): 045101, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341784

RESUMO

We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.

4.
Phys Rev Lett ; 96(15): 151102, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16712143

RESUMO

Electron and proton acceleration in three-dimensional electric and magnetic fields is studied through test particle simulations. The fields are obtained by a three-dimensional magnetohydrodynamic simulation of magnetic reconnection in slab geometry. The nonlinear evolution of the system is characterized by the growth of many unstable modes and the initial current sheet is fragmented with formation of small scale structures. We inject at random points inside the evolving current sheet a Maxwellian distribution of particles. In a relatively short time (less than a millisecond) the particles develop a power-law tail. The acceleration is extremely efficient and the electrons absorb a large percentage of the available energy in a small fraction of the characteristic time of the MHD simulation, suggesting that resistive MHD codes are unable to represent the full extent of particle acceleration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA