RESUMO
Since the first successful application of messenger ribonucleic acid (mRNA) as a vaccine agent in a preclinical study nearly 30 years ago, numerous advances have been made in the field of mRNA therapeutic technologies. This research uncovered the unique favorable characteristics of mRNA vaccines, including their ability to give rise to non-toxic, potent immune responses and the potential to design and upscale them rapidly, making them excellent vaccine candidates during the coronavirus disease 2019 (COVID-19) pandemic. Indeed, the first two vaccines against COVID-19 to receive accelerated regulatory authorization were nucleoside-modified mRNA vaccines, which showed more than 90% protective efficacy against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alongside tolerable safety profiles in the pivotal phase III clinical trials. Real-world evidence following the deployment of global vaccination campaigns utilizing mRNA vaccines has bolstered clinical trial evidence and further illustrated that this technology can be used safely and effectively to combat COVID-19. This unprecedented success also emphasized the broader potential of this new drug class, not only for other infectious diseases, but also for other indications, such as cancer and inherited diseases. This review presents a brief history and the current status of development of four mRNA vaccine platforms, nucleoside-modified and unmodified mRNA, circular RNA, and self-amplifying RNA, as well as an overview of the recent progress and status of COVID-19 mRNA vaccines. We also discuss the current and anticipated challenges of these technologies, which may be important for future research endeavors and clinical applications.
Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Nucleosídeos , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNARESUMO
The neuronal transcriptome changes dynamically to adapt to stimuli from the extracellular and intracellular environment. In this study, we adapted for the first time a click chemistry technique to label the newly synthesized RNA in cultured hippocampal neurons and intact larval zebrafish brain. Ethynyl uridine (EU) was incorporated into neuronal RNA in a time- and concentration-dependent manner. Newly synthesized RNA granules observed throughout the dendrites were colocalized with mRNA and rRNA markers. In zebrafish larvae, the application of EU to the swim water resulted in uptake and labeling throughout the brain. Using a GABA receptor antagonist, PTZ (pentylenetetrazol), to elevate neuronal activity, we demonstrate that newly transcribed RNA signal increased in specific regions involved in neurogenesis.
Assuntos
Química Click , Imagem Molecular/métodos , Neurônios/metabolismo , RNA/genética , RNA/metabolismo , Animais , Encéfalo/metabolismo , Genes de RNAr , Proteínas de Ligação a Poli(A)/metabolismo , Células Piramidais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-ZebraRESUMO
Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator.
Assuntos
Regulação da Expressão Gênica/genética , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/biossíntese , Linhagem Celular , Biologia Computacional , Genoma Humano , Haploidia , Humanos , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , RNA Mensageiro/genéticaRESUMO
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
RESUMO
BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with a dismal outcome in the majority of cases. A detailed understanding of the genetic alterations and gene expression changes that contribute to its pathogenesis is important to improve prognostication, disease monitoring, and therapy. In this context, leukemia-associated misexpression of microRNAs (miRNAs) has been studied, but no coherent picture has emerged yet, thus warranting further investigations. METHODS: The expression of 636 human miRNAs was compared between samples from 52 patients with AML and 13 healthy individuals by highly specific locked nucleic acid (LNA) based microarray technology. The levels of individual mature miRNAs and of primary miRNAs (pri-miRs) were determined by quantitative reverse transcriptase (qRT) PCR. Transfections and infections of human cell lines were performed using standard procedures. RESULTS: 64 miRNAs were significantly differentially expressed between AML and controls. Further studies on the clustered miRNAs 221 and 222, already known to act as oncogenes in other tumor types, revealed a deficiency of human myeloid cell lines to process vector derived precursor transcripts. Moreover, endogenous pri-miR-221/222 was overexpressed to a substantially higher extent than its mature products in most primary AML samples, indicating that its transcription was enhanced, but processing was rate limiting, in these cells. Comparison of samples from the times of diagnosis, remission, and relapse of AML demonstrated that pri-miR-221/222 levels faithfully reflected the stage of disease. CONCLUSIONS: Expression of some miRNAs is strongly regulated at the posttranscriptional level in AML. Pri-miR-221/222 represents a novel molecular marker and putative oncogene in this disease.
Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/biossíntese , Adolescente , Adulto , Idoso , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Adulto JovemRESUMO
Argininosuccinic aciduria (ASA) is a metabolic disorder caused by a deficiency in argininosuccinate lyase (ASL), which cleaves argininosuccinic acid to arginine and fumarate in the urea cycle. ASL deficiency (ASLD) leads to hepatocyte dysfunction, hyperammonemia, encephalopathy, and respiratory alkalosis. Here we describe a novel therapeutic approach for treating ASA, based on nucleoside-modified messenger RNA (modRNA) formulated in lipid nanoparticles (LNP). To optimize ASL-encoding mRNA, we modified its cap, 5' and 3' untranslated regions, coding sequence, and the poly(A) tail. We tested multiple optimizations of the formulated mRNA in human cells and wild-type C57BL/6 mice. The ASL protein showed robust expression in vitro and in vivo and a favorable safety profile, with low cytokine and chemokine secretion even upon administration of increasing doses of ASL mRNA-LNP. In the ASLNeo/Neo mouse model of ASLD, intravenous administration of the lead therapeutic candidate LNP-ASL CDS2 drastically improved the survival of the mice. When administered twice a week lower doses partially protected and 3 mg/kg LNP-ASL CDS2 fully protected the mice. These results demonstrate the considerable potential of LNP-formulated, modified ASL-encoding mRNA as an effective alternative to AAV-based approaches for the treatment of ASA.
RESUMO
The presence of the cap structure on the 5'-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies. Quality control methods necessary for the preclinical and clinical stages of development of these therapeutics are under ongoing development. Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5'-end capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis (PAGE) or liquid chromatography and mass spectrometry (LC-MS). Using this technology, we determined the capping efficiencies of IVT mRNAs with different features, which include: Different cap structures, diverse 5' untranslated regions, different nucleoside modifications, and diverse lengths. Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of capping efficiency for research and development purposes, as well as a general quality control for mRNA-based therapeutics.
RESUMO
Lipid nanoparticle (LNP) formulated messenger RNA-based (LNP-mRNA) vaccines came into the spotlight as the first vaccines against SARS-CoV-2 virus to be applied worldwide. Long-known benefits of mRNA-based technologies consisting of relatively simple and fast engineering of mRNA encoding for antigens and proteins of interest, no genomic integration, and fast and efficient manufacturing process compared with other biologics have been verified, thus establishing a basis for a broad range of applications. The intrinsic immunogenicity of LNP formulated in vitro transcribed (IVT) mRNA is beneficial to the LNP-mRNA vaccines. However, avoiding immune activation is critical for therapeutic applications of LNP-mRNA for protein replacement where targeted mRNA expression and repetitive administration of high doses for a lifetime are required. This review summarizes our current understanding of immune activation induced by mRNA, IVT byproducts, and LNP. It gives a comprehensive overview of the present status of preclinical and clinical studies in which LNP-mRNA is used for protein replacement and treatment of rare diseases with an emphasis on safety. Moreover, the review outlines innovations and strategies to advance pharmacology and safety of LNP-mRNA for non-immunotherapy applications.
RESUMO
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16-40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.
Assuntos
Impressão Genômica , RNA não Traduzido/genética , Receptor IGF Tipo 2/genética , Processamento Alternativo , Animais , Sequência de Bases , Sequência Conservada , Ilhas de CpG , Metilação de DNA , Evolução Molecular , Expressão Gênica , Células HeLa , Humanos , Íntrons , Camundongos , Camundongos Transgênicos , Polimorfismo Genético , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Transfecção , Transgenes , Tumor de Wilms/genéticaRESUMO
The increasing importance of in vitro-transcribed (IVT) mRNA for synthesizing the encoded therapeutic protein in vivo demands the manufacturing of pure mRNA products. The major contaminant in the IVT mRNA is double-stranded RNA (dsRNA), a transcriptional by-product that can be removed only by burdensome procedure requiring special instrumentation and generating hazardous waste. Here we present an alternative simple, fast, and cost-effective method involving only standard laboratory techniques. The purification of IVT mRNA is based on the selective binding of dsRNA to cellulose in an ethanol-containing buffer. We demonstrate that at least 90% of the dsRNA contaminants can be removed with a good, >65% recovery rate, regardless of the length, coding sequence, and nucleoside composition of the IVT mRNA. The procedure is scalable; purification of microgram or milligram amounts of IVT mRNA is achievable. Evaluating the impact of the mRNA purification in vivo in mice, increased translation could be measured for the administered transcripts, including the 1-methylpseudouridine-containing IVT mRNA, which no longer induced interferon (IFN)-α. The cellulose-based removal of dsRNA contaminants is an effective, reliable, and safe method to obtain highly pure IVT mRNA suitable for in vivo applications.
RESUMO
Gene annotation is a critical resource in genomics research. Many computational approaches have been developed to assemble transcriptomes based on high-throughput short-read sequencing, however, only with limited accuracy. Here, we combine next-generation and third-generation sequencing to reconstruct a full-length transcriptome in the rat hippocampus, which is further validated using independent 5´ and 3´-end profiling approaches. In total, we detect 28,268 full-length transcripts (FLTs), covering 6,380 RefSeq genes and 849 unannotated loci. Based on these FLTs, we discover co-occurring alternative RNA processing events. Integrating with polysome profiling and ribosome footprinting data, we predict isoform-specific translational status and reconstruct an open reading frame (ORF)-eome. Notably, a high proportion of the predicted ORFs are validated by mass spectrometry-based proteomics. Moreover, we identify isoforms with subcellular localization pattern in neurons. Collectively, our data advance our knowledge of RNA and protein isoform diversity in the rat brain and provide a rich resource for functional studies.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hipocampo/metabolismo , Proteínas/genética , RNA/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Ratos Sprague-DawleyRESUMO
Circular RNAs (circRNAs) have re-emerged as an interesting RNA species. Using deep RNA profiling in different mouse tissues, we observed that circRNAs were substantially enriched in brain and a disproportionate fraction of them were derived from host genes that encode synaptic proteins. Moreover, on the basis of separate profiling of the RNAs localized in neuronal cell bodies and neuropil, circRNAs were, on average, more enriched in the neuropil than their host gene mRNA isoforms. Using high-resolution in situ hybridization, we visualized circRNA punctae in the dendrites of neurons. Consistent with the idea that circRNAs might regulate synaptic function during development, many circRNAs changed their abundance abruptly at a time corresponding to synaptogenesis. In addition, following a homeostatic downscaling of neuronal activity many circRNAs exhibited substantial up- or downregulation. Together, our data indicate that brain circRNAs are positioned to respond to and regulate synaptic function.
Assuntos
Encéfalo/metabolismo , Dendritos/metabolismo , Plasticidade Neuronal/fisiologia , Neurópilo/metabolismo , RNA/metabolismo , Sinapses/genética , Animais , Encéfalo/crescimento & desenvolvimento , Feminino , Hipocampo/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , RNA Circular , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNARESUMO
The stability and dynamics of synapses rely on tight regulation of the synaptic proteome. Shank proteins, encoded by the three genes Shank1, Shank2 and Shank3 are scaffold molecules in the postsynaptic density of excitatory neurons that contribute to activity-dependent neuronal signalling. Mutations in the Shank genes are associated with neurological diseases. Using state-of-the-art technologies, we investigated the levels of expression of the Shank family messenger RNAs (mRNAs) within the synaptic neuropil of the rat hippocampus. We detected all three Shank transcripts in the neuropil of CA1 pyramidal neurons. We found Shank1 to be the most abundantly expressed among the three Shank mRNA homologues. We also examined the turnover of Shank mRNAs and predict the half-lives of Shank1, Shank2 and Shank3 mRNAs to be 18-28 h. Using 3'-end sequencing, we identified novel 3' ends for the Shank1 and Shank2 3' untranslated regions (3' UTRs) that may contribute to the diversity of alternative polyadenylation (APA) for the Shank transcripts. Our findings consolidate the view that the Shank molecules play a central role at the postsynaptic density. This study may shed light on synaptopathologies associated with disruption of local protein synthesis, perhaps linked to mutations in mRNA 3' UTRs or inappropriate 3' end processing.
Assuntos
Região CA1 Hipocampal/metabolismo , Regulação da Expressão Gênica/fisiologia , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Neurópilo/metabolismo , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Meia-Vida , Immunoblotting , Hibridização In Situ , Microdissecção , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Poliadenilação , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNARESUMO
The human SHOX gene is composed of seven exons and encodes a paired-related homeodomain transcription factor. SHOX mutations or deletions have been associated with different short stature syndromes implying a role in growth and bone formation. During development, SHOX is expressed in a highly specific spatiotemporal expression pattern, the underlying regulatory mechanisms of which remain largely unknown. We have analysed SHOX expression in diverse embryonic, fetal and adult human tissues and detected expression in many tissues that were not known to express SHOX before, e.g. distinct brain regions. By using RT-PCR and comparing the results with RNA-Seq data, we have identified four novel exons (exon 2a, 7-1, 7-2 and 7-3) contributing to different SHOX isoforms, and also established an expression profile for the emerging new SHOX isoforms. Interestingly, we found the exon 7 variants to be exclusively expressed in fetal neural tissues, which could argue for a specific role of these variants during brain development. A bioinformatical analysis of the three novel 3'UTR exons yielded insights into the putative role of the different 3'UTRs as targets for miRNA binding. Functional analysis revealed that inclusion of exon 2a leads to nonsense-mediated RNA decay altering SHOX expression in a tissue and time specific manner. In conclusion, SHOX expression is regulated by different mechanisms and alternative splicing coupled with nonsense-mediated RNA decay constitutes a further component that can be used to fine tune the SHOX expression level.
Assuntos
Processamento Alternativo/genética , Códon sem Sentido/genética , Proteínas de Homeodomínio/genética , Estabilidade de RNA/genética , Sítios de Ligação , Éxons/genética , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína de Homoeobox de Baixa EstaturaRESUMO
Imprinted macro non-protein-coding (nc) RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.