Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Genomics ; 21(1): 716, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066734

RESUMO

BACKGROUND: To elucidate features of seed development, we investigated the transcriptome of a soybean isoline from the germplasm collection that contained an introgressed allele known as minute hilum (mi) which confers a smaller hilum region where the seed attaches to the pod and also results in seed coat cracking surrounding the hilum region. RESULTS: RNAs were extracted from immature seed from an extended hilum region (i.e., the hilum and a small ring of tissue surrounding the hilum in which the cracks form) at three different developmental stages:10-25, 25-50 and 50-100 mg seed fresh weight in two independent replicates for each stage. The transcriptomes of these samples from both the Clark isoline containing the mi allele (PI 547628, UC413, ii R t mi G), and its recurrent Clark 63 parent isoline (PI 548532, UC7, ii R T Mi g), which was used for six generations of backcrossing, were compared for differential expression of 88,648 Glyma models of the soybean genome Wm82.a2. The RNA sequence data obtained from the 12 cDNA libraries were subjected to padj value < 0.05 and at least two-fold expression differences to select with confidence genes differentially expressed in the hilum-containing tissue of the seed coat between the two lines. Glyma.09G008400 annotated as encoding an ethylene forming enzyme, ACC oxidase (ACO), was found to be highly overexpressed in the mi hilum region at 165 RPKMs (reads per kilobase per million mapped reads) compared to the standard line at just 0.03 RPKMs. Evidence of changes in expression of genes downstream of the ethylene pathway included those involved in auxin and gibberellin hormone action and extensive differences in expression of cell wall protein genes. These changes are postulated to determine the restricted hilum size and cracking phenotypes. CONCLUSIONS: We present transcriptome and phenotypic evidence that substantially higher expression of an ethylene-forming ACO gene likely shifts hormone balance and sets in motion downstream changes resulting in a smaller hilum phenotype and the cracks observed in the minute hilum (mi) isoline as compared to its recurrent parent.


Assuntos
Glycine max , Sementes , Aminoácido Oxirredutases , Etilenos , Fenótipo , Sementes/genética , Glycine max/genética
2.
Plant Cell ; 29(4): 708-725, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28351993

RESUMO

The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation, and the recessive k1 mutation can epistatically overcome the dominant I and ii alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the ii and ik alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous ik K1 versus homozygous ii k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Nonfunctional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or ii alleles.


Assuntos
Glycine max/genética , Glycine max/metabolismo , Mutação , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética
3.
Theor Appl Genet ; 132(9): 2651-2662, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31230117

RESUMO

KEY MESSAGE: Soybean expressing small interfering RNA of SCN improved plant resistance to SCN consistently, and small RNA-seq analysis revealed a threshold of siRNA expression required for resistance ability. Soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pests limiting soybean production worldwide, with estimated losses of $1 billion dollars annually in the USA alone. RNA interference (RNAi) has become a powerful tool for silencing gene expression. We report here that the expression of hairpin RNAi constructs, derived from two SCN genes related to reproduction and fitness, HgY25 and HgPrp17, enhances resistance to SCN in stably transformed soybean plants. The analyses of T3 to T5 generations of stable transgenic soybeans by molecular strategies and next-generation sequencing confirmed the presence of specific short interfering RNAs complementary to the target SCN genes. Bioassays performed on transgenic soybean lines targeting SCN HgY25 and HgPrp17 fitness genes showed significant reductions (up to 73%) for eggs/g root in the T3 and T4 homozygous transgenic lines. Targeted mRNAs of SCN eggs collected from the transgenic soybean lines were efficiently down-regulated, as confirmed by quantitative RT-PCR. Based on the small RNA-seq data and bioassays, it is our hypothesis that a threshold of small interfering RNA molecules is required to significantly reduce SCN populations feeding on the host plants. Our results demonstrated that host-derived gene silencing of essential SCN fitness genes could be an effective strategy for enhancing resistance in crop plants.


Assuntos
Resistência à Doença/genética , Inativação Gênica , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tylenchoidea/fisiologia , Animais , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Aptidão Genética , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Glycine max/metabolismo
4.
Plant Biotechnol J ; 14(1): 117-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25816689

RESUMO

In plants, particular micro-RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans-acting siRNA (ta-siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta-siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA-induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta-siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta-siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta-siRNA pathway. A side-by-side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/metabolismo , Sequência de Bases , Genes de Plantas , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/genética
5.
Plant Physiol ; 167(3): 639-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25635113

RESUMO

Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts.


Assuntos
Cotilédone/metabolismo , Glycine max/crescimento & desenvolvimento , Fótons , Análise Serial de Proteínas , Plântula/crescimento & desenvolvimento , Silício/farmacologia , Fatores de Transcrição/metabolismo , Anticorpos/farmacologia , Cotilédone/efeitos dos fármacos , Cotilédone/genética , Reações Cruzadas/imunologia , Cristalização , Epitopos/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Controladores do Desenvolvimento , Genes de Plantas , Peptídeos/imunologia , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Fatores de Transcrição/genética
6.
Funct Integr Genomics ; 14(4): 683-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25070765

RESUMO

During early seedling growth, the cotyledons transition from a storage tissue to become effectively the first leaf-like structures of the plant. In this programmed developmental process, they likely undergo a massive change in gene expression to redirect their metabolism and physiological processes. To define the developmental shifts in gene expression and begin to understand the gene regulatory networks that set this transition in motion, we carried out high-throughput RNA sequencing of cotyledons from seven developmental stages of soybean seedlings. We identified 154 gene models with high expression exclusively in the early seedling stages. A significant number (about 25 %) of those genes with known annotations were involved in carbohydrate metabolism. A detailed examination of glyoxylate cycle genes revealed the upregulation of their expression in the early stages of development. A total of approximately 50 % of the highly expressed genes whose expression peaked in the mid-developmental stages encoded ribosomal family proteins. Our analysis also identified 219 gene models with high expression at late developmental stages. The majority of these genes are involved in photosynthesis, including photosystem I- and II-associated genes. Additionally, the advantage of RNA-Seq to detect genes expressed at low levels revealed approximately 460 transcription factors with notable expression in at least one stage of the developing soybean seedling. Relatively over-represented transcription factor genes encode AP2, zinc finger, NAC, WRKY, and MYB families. These transcription factor genes may lead to the transcriptional reprogramming during the transition of seedling cotyledons from storage tissue to metabolically active organs that serve as the first functional leaves of the plant.


Assuntos
Cotilédone/genética , Genes de Plantas , Glycine max/genética , Glioxilatos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Fatores de Transcrição/genética , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Cotilédone/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fotossíntese/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Glycine max/crescimento & desenvolvimento
7.
BMC Genomics ; 14: 477, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865409

RESUMO

BACKGROUND: Two plant-specific transcription factors, NAC and YABBY, are involved in important plant developmental processes. However their molecular mechanisms, especially DNA binding sites and co-regulated genes, are largely unknown during soybean seedling development. RESULTS: In order to identify genome-wide binding sites of specific members of the NAC and YABBY transcription factors and co-regulated genes, we performed Chromatin Immunoprecipitation Sequencing (ChIP-Seq) and RNA Sequencing (RNA-Seq) using cotyledons from soybean seedling developmental stages. Our RNA-Seq data revealed that these particular NAC and YABBY transcription factors showed a clear pattern in their expression during soybean seedling development. The highest level of their expression was found in seedling developmental stage 4 when cotyledons undergo a physiological transition from non-photosynthetic storage tissue to a metabolically active photosynthetic tissue. Our ChIP-Seq data identified 72 genes potentially regulated by the NAC and 96 genes by the YABBY transcription factors examined. Our RNA-Seq data revealed highly differentially expressed candidate genes regulated by the NAC transcription factor include lipoxygense, pectin methyl esterase inhibitor, DEAD/DEAH box helicase and homeobox associated proteins. YABBY-regulated genes include AP2 transcription factor, fatty acid desaturase and WRKY transcription factor. Additionally, we have identified DNA binding motifs for the NAC and YABBY transcription factors. CONCLUSIONS: Genome-wide determination of binding sites for NAC and YABBY transcription factors and identification of candidate genes regulated by these transcription factors will advance the understanding of complex gene regulatory networks during soybean seedling development. Our data imply that there is transcriptional reprogramming during the functional transition of cotyledons from non-photosynthetic storage tissue to metabolically active photosynthetic tissue.


Assuntos
Perfilação da Expressão Gênica , Genômica , Glycine max/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/metabolismo , Análise de Sequência de RNA , Glycine max/genética , Glycine max/metabolismo
8.
BMC Genomics ; 13: 310, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22799740

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate the expression of target genes by mediating gene silencing in both plants and animals. The miRNA targets have been extensively investigated in Arabidopsis and rice using computational prediction, experimental validation by overexpression in transgenic plants, and by degradome or PARE (parallel analysis of RNA ends) sequencing. However, miRNA targets mostly remain unknown in soybean (Glycine max). More specifically miRNA mediated gene regulation at different seed developmental stages in soybean is largely unexplored. In order to dissect miRNA guided gene regulation in soybean developing seeds, we performed a transcriptome-wide experimental method using degradome sequencing to directly detect cleaved miRNA targets. RESULTS: In this study, degradome libraries were separately prepared from immature soybean cotyledons representing three stages of development and from seed coats of two stages. Sequencing and analysis of 10 to 40 million reads from each library resulted in identification of 183 different targets for 53 known soybean miRNAs. Among these, some were found only in the cotyledons representing cleavage by 25 miRNAs and others were found only in the seed coats reflecting cleavage by 12 miRNAs. A large number of targets for 16 miRNAs families were identified in both tissues irrespective of the stage. Interestingly, we identified more miRNA targets in the desiccating cotyledons of late seed maturation than in immature seed. We validated four different auxin response factor genes as targets for gma-miR160 via RNA ligase mediated 5' rapid amplification of cDNA ends (RLM-5'RACE). Gene Ontology (GO) analysis indicated the involvement of miRNA target genes in various cellular processes during seed development. CONCLUSIONS: The miRNA targets in both the cotyledons and seed coats of several stages of soybean seed development have been elucidated by experimental evidence from comprehensive, high throughput sequencing of the enriched fragments resulting from miRNA-guided cleavage of messenger RNAs. Nearly 50% of the miRNA targets were transcription factors in pathways that are likely important in setting or maintaining the developmental program leading to high quality soybean seeds that are one of the dominant sources of protein and oil in world markets.


Assuntos
Glycine max/genética , Arabidopsis/genética , Sequência de Bases , Cotilédone/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biblioteca Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Sementes/genética , Análise de Sequência de RNA , Glycine max/crescimento & desenvolvimento
9.
BMC Plant Biol ; 12: 177, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23031057

RESUMO

BACKGROUND: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gained mostly through studies with Arabidopsis. In recent years, high throughput sequencing of smRNA populations has enabled extension of knowledge from model systems to plants with larger, more complex genomes. Soybean (Glycine max) now has many genomics resources available including a complete genome sequence and predicted gene models. Relatively little is known, however, about the full complement of its endogenous smRNAs populations and the silenced genes. RESULTS: Using Illumina sequencing and computational analysis, we characterized eight smRNA populations from multiple tissues and organs of soybean including developing seed and vegetative tissues. A total of 41 million raw sequence reads collapsed into 135,055 unique reads were mapped to the soybean genome and its predicted cDNA gene models. Bioinformatic analyses were used to distinguish miRNAs and siRNAs and to determine their genomic origins and potential target genes. In addition, we identified two soybean TAS3 gene homologs, the miRNAs that putatively guide cleavage of their transcripts, and the derived tasiRNAs that could target soybean genes annotated as auxin response factors. Tissue-differential expression based on the flux of normalized miRNA and siRNA abundances in the eight smRNA libraries was evident, some of which was confirmed by smRNA blotting. Our global view of these smRNA populations also revealed that the size classes of smRNAs varied amongst different tissues, with the developing seed and seed coat having greater numbers of unique smRNAs of the 24-nt class compared to the vegetative tissues of germinating seedlings. The 24-nt class is known to be derived from repetitive elements including transposons. Detailed analysis of the size classes associated with ribosomal RNAs and transposable element families showed greater diversity of smRNAs in the 22- and 24-nt size classes. CONCLUSIONS: The flux of endogenous smRNAs within multiple stages and tissues of seed development was contrasted with vegetative tissues of soybean, one of the dominant sources of protein and oil in world markets. The smRNAs varied in size class, complexity of origins, and possible targets. Sequencing revealed tissue-preferential expression for certain smRNAs and expression differences among closely related miRNA family members.


Assuntos
Glycine max/genética , Especificidade de Órgãos/genética , RNA de Plantas/genética , Sementes/genética , Pareamento de Bases/genética , Sequência de Bases , Biologia Computacional , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Plantas/química , RNA de Plantas/química , RNA de Plantas/metabolismo , RNA Ribossômico/genética , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Retroelementos/genética , Alinhamento de Sequência , Análise de Sequência de RNA
10.
J Exp Bot ; 63(10): 3683-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442414

RESUMO

Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant ß-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host ß-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/parasitologia , Celulase/metabolismo , Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Celulase/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ligação Proteica , Tylenchoidea/genética , Tylenchoidea/crescimento & desenvolvimento
11.
Plant Cell ; 21(10): 3063-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19820189

RESUMO

Two dominant alleles of the I locus in Glycine max silence nine chalcone synthase (CHS) genes to inhibit function of the flavonoid pathway in the seed coat. We describe here the intricacies of this naturally occurring silencing mechanism based on results from small RNA gel blots and high-throughput sequencing of small RNA populations. The two dominant alleles of the I locus encompass a 27-kb region containing two perfectly repeated and inverted clusters of three chalcone synthase genes (CHS1, CHS3, and CHS4). This structure silences the expression of all CHS genes, including CHS7 and CHS8, located on other chromosomes. The CHS short interfering RNAs (siRNAs) sequenced support a mechanism by which RNAs transcribed from the CHS inverted repeat form aberrant double-stranded RNAs that become substrates for dicer-like ribonuclease. The resulting primary siRNAs become guides that target the mRNAs of the nonlinked, highly expressed CHS7 and CHS8 genes, followed by subsequent amplification of CHS7 and CHS8 secondary siRNAs by RNA-dependent RNA polymerase. Most remarkably, this silencing mechanism occurs only in one tissue, the seed coat, as shown by the lack of CHS siRNAs in cotyledons and vegetative tissues. Thus, production of the trigger double-stranded RNA that initiates the process occurs in a specific tissue and represents an example of naturally occurring inhibition of a metabolic pathway by siRNAs in one tissue while allowing expression of the pathway and synthesis of valuable secondary metabolites in all other organs/tissues of the plant.


Assuntos
Aciltransferases/genética , Glycine max/enzimologia , Glycine max/genética , Proteínas de Plantas/genética , RNA Interferente Pequeno/fisiologia , Sementes/enzimologia , Sementes/genética , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
BMC Plant Biol ; 11: 145, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22029708

RESUMO

BACKGROUND: Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. RESULTS: Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. CONCLUSION: Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines.


Assuntos
Perfilação da Expressão Gênica/métodos , Glycine max/genética , Transcriptoma , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genótipo , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA/métodos
13.
BMC Genomics ; 11: 136, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181280

RESUMO

BACKGROUND: To understand gene expression networks leading to functional properties of the soybean seed, we have undertaken a detailed examination of soybean seed development during the stages of major accumulation of oils, proteins, and starches, as well as the desiccating and mature stages, using microarrays consisting of up to 27,000 soybean cDNAs. A subset of these genes on a highly-repetitive 70-mer oligonucleotide microarray was also used to support the results. RESULTS: It was discovered that genes related to cell growth and maintenance processes, as well as energy processes like photosynthesis, decreased in expression levels as the cotyledons approached the mature, dry stage. Genes involved with some storage proteins had their highest expression levels at the stage of highest fresh weight. However, genes encoding many transcription factors and DNA binding proteins showed higher expression levels in the desiccating and dry seeds than in most of the green stages. CONCLUSIONS: Data on 27,000 cDNAs have been obtained over five stages of soybean development, including the stages of major accumulation of agronomically-important products, using two different types of microarrays. Of particular interest are the genes found to peak in expression at the desiccating and dry seed stages, such as those annotated as transcription factors, which may indicate the preparation of pathways that will be needed later in the early stages of imbibition and germination.


Assuntos
Perfilação da Expressão Gênica , Glycine max/genética , Sementes/crescimento & desenvolvimento , DNA Complementar/genética , DNA de Plantas/genética , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
Anal Chem ; 82(16): 6854-61, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704375

RESUMO

DNA microarrays are used to profile changes in gene expression between samples in a high-throughput manner, but measurements of genes with low expression levels can be problematic with standard microarray substrates. In this work, we expand the detection capabilities of a standard microarray experiment using a photonic crystal (PC) surface that enhances fluorescence observed from microarray spots. This PC is inexpensively and uniformly fabricated using a nanoreplica molding technique, with very little variation in its optical properties within- and between-devices. By using standard protocols to process glass microarray substrates in parallel with PCs, we evaluated the impact of this substrate on a one-color microarray experiment comparing gene expression in two developmental stages of Glycine max. The PCs enhanced the signal-to-noise ratio observed from microarray spots by 1 order of magnitude, significantly increasing the number of genes detected above substrate fluorescence noise. PC substrates more than double the number of genes classified as differentially expressed, detecting changes in expression even for low expression genes. This approach increases the dynamic range of a surface-bound fluorescence-based assay to reliably quantify small quantities of DNA that would be impossible with standard substrates.


Assuntos
DNA/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fótons , Cristalização , Espectrometria de Fluorescência
15.
PLoS One ; 15(6): e0233721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516314

RESUMO

Understanding the molecular processes of seed development is important especially in agronomic crops that produce large amounts of nutrient reserves. Because soybean is a vital source of vegetable protein worldwide, producers are concerned about increasing the total amount of protein in the seed without substantially lowering the amount of oil, another economically important product. Here we describe a transgenic soybean line with increased protein and protein/oil ratio, containing an average of 42.2% protein vs. 38.5% in controls and with a protein/oil ratio of 2.02 vs. 1.76 in controls over several generations of greenhouse growth. Other phenotypic data show that the seeds are heavier, although there are overall lower yields per plant. We postulate these effects result from insertion site mutagenesis by the transgenic construct. As this line never achieves homozygosity and appears to be embryo lethal when homozygous, one functional copy of the gene is most likely essential for normal seed development. Global transcript analyses using RNA-Seq for 88,000 gene models over two stages of cotyledon development revealed that more genes are over-expressed in the transgenic line including ribosomal protein related genes and those in the membrane protein and transporters families. Localization of the insertion site should reveal the genes and developmental program that has been perturbed by the transgenic construct, resulting in this economically interesting increase in protein and the protein/oil ratio.


Assuntos
Glycine max/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Heterozigoto , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sementes/genética , Sementes/metabolismo , Glycine max/crescimento & desenvolvimento
16.
Opt Express ; 17(15): 13222-35, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19654728

RESUMO

We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface. This technique is applied to a DNA microarray where label-free quantification of immobilized capture DNA enables improved quality control and subsequent enhanced fluorescence detection of dye-tagged hybridized DNA yields 3x more genes to be detected versus commercially available microarray substrates.


Assuntos
Técnicas Biossensoriais/instrumentação , Microscopia de Fluorescência/métodos , Óptica e Fotônica , Adsorção , Animais , Cristalização , Vidro , Humanos , Lasers , Metais/química , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fótons , Controle de Qualidade , Ressonância de Plasmônio de Superfície/métodos
17.
Appl Opt ; 48(34): 6567-74, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19956311

RESUMO

A theory is derived to describe the relationship between photonic crystal (PC) label-free imaging resolution and PC resonance spectral linewidth and location. PCs are fabricated and patterned with a resolution standard photomask in order to verify this relationship experimentally. Two distinct linear resolutions of <1 microm and 3.5 microm are demonstrated in orthogonal directions on a single device, where the former is limited by the imaging system optics and the latter is constrained by finite resonant mode propagation. In order to illustrate the utility of improved design control, the spectral response of a PC is optimized for label-free imaging of immobilized DNA capture spots on a microarray.


Assuntos
Cristalização/métodos , DNA/ultraestrutura , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Refratometria/métodos , Fótons , Coloração e Rotulagem
18.
Plant Direct ; 3(8): e00162, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31468028

RESUMO

The structure of chalcone synthase (CHS) gene repeats in different alleles of the I (inhibitor) locus in soybean spawns endogenous RNA interference (RNAi) that leads to phenotypic change in seed coat color of this major agronomic crop. Here, we examined CHS gene copy number by digital PCR and single nucleotide polymorphisms (SNPs) through whole genome resequencing of 15 cultivars that varied in alleles of the I locus (I, ii , ik , and i) that control the pattern distribution of pigments in the seed coats. Lines homozygous for the ii allele had the highest copy number followed by the I and ik cultivars which were more related to each other than to the lines with ii alleles. Some of the recessive i alleles were spontaneous mutations, and each revealed a loss of copy number by digital PCR relative to the parent varieties. Amplicon sequencing and whole genome resequencing determined that the breakpoints of several ii to i mutations resulted from nonallelic homologous recombination (NAHR) events between CHS genes located in segmental duplications leading to large 138-kilobase deletions that erase the structure generating the CHS siRNAs along with eight other non-CHS genes. Functional hybrid CHS genes (designated CHS5:1) were formed in the process and represent rare examples of NAHR in higher plants that have been captured by examining spontaneous mutational events in isogenic mutant lines.

19.
Mol Plant Microbe Interact ; 21(5): 631-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393623

RESUMO

Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation, timepoints that coincide with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by quantitative reverse transcriptase-polymerase chain reaction, and their expression patterns mimicked the microarray results, confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Glycine max/genética , Nódulos Radiculares de Plantas/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Soja/genética , Glycine max/microbiologia , Transcrição Gênica
20.
BMC Plant Biol ; 8: 124, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19055742

RESUMO

BACKGROUND: The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008. RESULTS: We identified a 20.5 kb insertion in a soybean flavonoid 3'-hydroxylase (F3'H) gene representing the t* allele (stable gray trichome color) whose origin traces to a single mutable chimeric plant displaying both tawny and gray trichomes. This 20.5 kb insertion has the molecular structure of a putative autonomous transposon of the CACTA family, designated Tgmt*. It encodes a large gene that was expressed in two sister isolines (T* and tm) of the stable gray line (t*) from which Tgmt* was isolated. RT-PCR derived cDNAs uncovered the structure of a large precursor mRNA as well as alternatively spliced transcripts reminiscent of the TNPA-mRNA generated by the En-1 element of maize but without sequence similarity to the maize TNPA. The larger mRNA encodes a transposase with a tnp2 and TNP1-transposase family domains. Because the two soybean lines expressing Tgmt* were derived from the same mutable chimeric plant that created the stable gray trichome t* allele line from which the element was isolated, Tgmt* has the potential to be an autonomous element that was rapidly inactivated in the stable gray trichome t* line. Comparison of Tgmt* to previously described Tgm elements demonstrated that two subtypes of CACTA transposon families exist in soybean based on divergence of their characteristic subterminal repeated motifs and their transposases. In addition, we report the sequence and annotation of a BAC clone containing the F3'H gene (T locus) which was interrupted by the novel Tgmt* element in the gray trichome allele t*. CONCLUSION: The molecular characterization of a 20.5 kb insertion in the flavonoid 3'-hydroxylase (F3'H) gene of a soybean gray pubescence allele (t*) identified the structure of a CACTA transposon designated Tgmt*. Besides the terminal inverted repeats and subterminal repeated motifs,Tgmt* encoded a large gene with two putative functions that are required for excision and transposition of a CACTA element, a transposase and the DNA binding protein known to associate to the subterminal repeated motifs. The degree of dissimilarity between Tgmt* transposase and subterminal repeated motifs with those of previously characterized defective CACTA elements (Tgm1-7) were evidence of the existence of two subfamilies of CACTA transposons in soybean, an observation not previously reported in other plants. In addition, our analyses of a genetically active and potentially autonomous element sheds light on the complete structure of a soybean element that is useful for annotation of the repetitive fraction of the soybean genome sequence and may prove useful for transposon tagging or transposon display experiments in different genetic lines.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Elementos de DNA Transponíveis , Glycine max/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Genes de Plantas , Genótipo , Dados de Sequência Molecular , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA