Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 63(5): 852-64, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546790

RESUMO

Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Helicases/genética , DNA/genética , Proteínas de Escherichia coli/genética , Plasmídeos/metabolismo , RNA Bacteriano/genética , Sítios de Ligação , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Clonagem Molecular , DNA/química , DNA/metabolismo , Clivagem do DNA , DNA Helicases/química , DNA Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Plasmídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
2.
J Mol Biol ; 430(8): 1141-1156, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29518409

RESUMO

Bacteria resist phage infection using multiple strategies, including CRISPR-Cas and abortive infection (Abi) systems. Abi systems provide population-level protection from phage predation, via "altruistic" cell suicide. It has recently been shown that some Abi systems function via a toxin-antitoxin mechanism, such as the widespread AbiE family. The Streptococcus agalactiae AbiE system consists of a bicistronic operon encoding the AbiEi antitoxin and AbiEii toxin, which function as a Type IV toxin-antitoxin system. Here we examine the AbiEi antitoxin, which belongs to a large family of transcriptional regulators with a conserved N-terminal winged helix-turn-helix domain. This winged helix-turn-helix is essential for transcriptional repression of the abiE operon. The function of the AbiEi C-terminal domain is poorly characterized, but it contributes to transcriptional repression and is sufficient for toxin neutralization. We demonstrate that a conserved charged surface on one face of the C-terminal domain assists sequence-specific DNA binding and negative autoregulation, without influencing antitoxicity. Furthermore, AbiEi binds cooperatively to two inverted repeats within the abiE promoter and bends the DNA by 72°. These findings demonstrate that the mechanism of DNA binding by the widespread family of AbiEi antitoxins and transcriptional regulators can contribute to negative autoregulation.


Assuntos
Toxinas Bacterianas/genética , Streptococcus anginosus/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Antitoxinas/química , Antitoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Família Multigênica , Óperon , Regiões Promotoras Genéticas , Conformação Proteica , Domínios Proteicos , Streptococcus anginosus/química , Streptococcus anginosus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA