Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 185(5): 1471-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25795282

RESUMO

Breast cancer metastasis is the leading cause of cancer-related deaths in women worldwide. Collagen in the tumor microenvironment plays a crucial role in regulating tumor progression. We have shown that type III collagen (Col3), a component of tumor stroma, regulates myofibroblast differentiation and scar formation after cutaneous injury. During the course of these wound-healing studies, we noted that tumors developed at a higher frequency in Col3(+/-) mice compared to wild-type littermate controls. We, therefore, examined the effect of Col3 deficiency on tumor behavior, using the murine mammary carcinoma cell line 4T1. Notably, tumor volume and pulmonary metastatic burden after orthotopic injection of 4T1 cells were increased in Col3(+/-) mice compared to Col3(+/+) littermates. By using murine (4T1) and human (MDA-MB-231) breast cancer cells grown in Col3-poor and Col3-enriched microenvironments in vitro, we found that several major events of the metastatic process were suppressed by Col3, including adhesion, invasion, and migration. In addition, Col3 deficiency increased proliferation and decreased apoptosis of 4T1 cells both in vitro and in primary tumors in vivo. Mechanistically, Col3 suppresses the procarcinogenic microenvironment by regulating stromal organization, including density and alignment of fibrillar collagen and myofibroblasts. We propose that Col3 plays an important role in the tumor microenvironment by suppressing metastasis-promoting characteristics of the tumor-associated stroma.


Assuntos
Colágeno Tipo III/metabolismo , Neoplasias Mamárias Experimentais/patologia , Invasividade Neoplásica/patologia , Microambiente Tumoral/fisiologia , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
2.
Calcif Tissue Int ; 94(6): 621-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24626604

RESUMO

Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers-Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6-8 weeks) and middle-aged (>1 year) control (Col3(+/+)) and haploinsufficient (Col3(+/-)) mice, as well as young null (Col3(-/-)) mice by microcomputed tomography (µCT). Although Col3(+/-) mice did not have significant craniofacial abnormalities based upon cranial morphometrics, µCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3(+/-) mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3(-/-) embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3(+/-) mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3(+/-) compared to Col3(+/+) bones. Taken together, these findings indicate that Col3 plays a role in development of trabecular bone through its effects on osteoblast differentiation.


Assuntos
Colágeno Tipo III/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Animais , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Feminino , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA