Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598943

RESUMO

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Assuntos
Fatores de Transcrição Forkhead , Síndrome de Rett , Camundongos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Síndrome de Rett/genética , Epigênese Genética , Cromatina/genética , Cromatina/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
EMBO Rep ; 24(8): e56233, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37382163

RESUMO

Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.


Assuntos
Aspartato-Amônia Ligase , Células-Tronco Neurais , Aspartato-Amônia Ligase/metabolismo , Diferenciação Celular/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética
3.
Mol Psychiatry ; 28(1): 497-514, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318461

RESUMO

The transcription factor FOXG1 serves pleiotropic functions in brain development ranging from the regulation of precursor proliferation to the control of cortical circuit formation. Loss-of-function mutations and duplications of FOXG1 are associated with neurodevelopmental disorders in humans illustrating the importance of FOXG1 dosage for brain development. Aberrant FOXG1 dosage has been found to disrupt the balanced activity of glutamatergic and GABAergic neurons, but the underlying mechanisms are not fully understood. We report that FOXG1 is expressed in the main adult neurogenic niches in mice, i.e. the hippocampal dentate gyrus and the subependymal zone/olfactory bulb system, where neurogenesis of glutamatergic and GABAergic neurons persists into adulthood. These niches displayed differential vulnerability to increased FOXG1 dosage: high FOXG1 levels severely compromised survival and glutamatergic dentate granule neuron fate acquisition in the hippocampal neurogenic niche, but left neurogenesis of GABAergic neurons in the subependymal zone/olfactory bulb system unaffected. Comparative transcriptomic analyses revealed a significantly higher expression of the apoptosis-linked nuclear receptor Nr4a1 in FOXG1-overexpressing hippocampal neural precursors. Strikingly, pharmacological interference with NR4A1 function rescued FOXG1-dependent death of hippocampal progenitors. Our results reveal differential vulnerability of neuronal subtypes to increased FOXG1 dosage and suggest that activity of a FOXG1/NR4A1 axis contributes to such subtype-specific response.


Assuntos
Proteínas do Tecido Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Humanos
4.
Cereb Cortex ; 33(19): 10272-10285, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566909

RESUMO

The cortical plate (CP) is composed of excitatory and inhibitory neurons, the latter of which originate in the ganglionic eminences. From their origin in the ventral telencephalon, maturing postmitotic interneurons migrate during embryonic development over some distance to reach their final destination in the CP. The histone methyltransferase Disruptor of Telomeric Silencing 1-like (DOT1L) is necessary for proper CP development and layer distribution of glutamatergic neurons. However, its specific role on cortical interneuron development has not yet been explored. Here, we demonstrate that DOT1L affects interneuron development in a cell autonomous manner. Deletion of Dot1l in Nkx2.1-expressing interneuron precursor cells results in an overall reduction and altered distribution of GABAergic interneurons in the CP from postnatal day 0 onwards. We observed an altered proportion of GABAergic interneurons in the cortex, with a significant decrease in parvalbumin-expressing interneurons. Moreover, a decreased number of mitotic cells at the embryonic day E14.5 was observed upon Dot1l deletion. Altogether, our results indicate that reduced numbers of cortical interneurons upon DOT1L deletion result from premature cell cycle exit, but effects on postmitotic differentiation, maturation, and migration are likely at play as well.


Assuntos
Histona-Lisina N-Metiltransferase , Interneurônios , Parvalbuminas , Telencéfalo , Diferenciação Celular/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Telencéfalo/citologia , Animais , Camundongos , Histona-Lisina N-Metiltransferase/genética
5.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055139

RESUMO

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.


Assuntos
Fatores de Transcrição Forkhead/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Rett/genética , Animais , Modelos Animais de Doenças , Humanos , Mutação , Fenótipo
6.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30329130

RESUMO

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Metiltransferases/genética , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase , Metilação , Camundongos , Neurônios/patologia , Proteínas Repressoras/genética , Fatores de Transcrição SOXD/genética , Proteínas com Domínio T , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Telencéfalo/patologia , Proteínas Supressoras de Tumor/genética
7.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206710

RESUMO

Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.


Assuntos
Astrócitos/metabolismo , Epigênese Genética , Gliose/genética , Animais , Astrócitos/citologia , Astrócitos/patologia , Diferenciação Celular , Gliose/metabolismo , Humanos
8.
Mol Cell ; 46(5): 705-13, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681891

RESUMO

Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.


Assuntos
Diferenciação Celular/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
9.
Cereb Cortex ; 27(8): 4166-4181, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444170

RESUMO

Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metilação de DNA , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Estresse Psicológico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Doença Crônica , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Estresse Psicológico/genética , Transmissão Sináptica/fisiologia , Transcriptoma
10.
Stem Cells ; 34(1): 233-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26299268

RESUMO

Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Córtex Cerebral/citologia , Estresse do Retículo Endoplasmático , Metiltransferases/metabolismo , Células-Tronco Neurais/citologia , Neuroproteção , Fator de Transcrição CHOP/metabolismo , Animais , Benzimidazóis/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Lisina , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuroproteção/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
11.
Hum Mol Genet ; 23(23): 6177-90, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990151

RESUMO

Simultaneous generation of neural cells and that of the nutrient-supplying vasculature during brain development is called neurovascular coupling. We report on a transgenic mouse with impaired transforming growth factor ß (TGFß)-signalling in forebrain-derived neural cells using a Foxg1-cre knock-in to drive the conditional knock-out of the Tgfbr2. Although the expression of FOXG1 is assigned to neural progenitors and neurons of the telencephalon, Foxg1(cre/+);Tgfbr2(flox/flox) (Tgfbr2-cKO) mutants displayed intracerebral haemorrhage. Blood vessels exhibited an atypical, clustered appearance were less in number and displayed reduced branching. Vascular endothelial growth factor (VEGF) A, insulin-like growth factor (IGF) 1, IGF2, TGFß, inhibitor of DNA binding (ID) 1, thrombospondin (THBS) 2, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1 were altered in either expression levels or tissue distribution. Accordingly, human umbilical vein endothelial cells (HUVEC) displayed branching defects after stimulation with conditioned medium (CM) that was derived from primary neural cultures of the ventral and dorsal telencephalon of Tgfbr2-cKO. Supplementing CM of Tgfbr2-cKO with VEGFA rescued these defects, but application of TGFß aggravated them. HUVEC showed reduced migration towards CM of mutants compared with controls. Supplementing the CM with growth factors VEGFA, fibroblast growth factor (FGF) 2 and IGF1 partially restored HUVEC migration. In contrast, TGFß supplementation further impaired migration of HUVEC. We observed differences along the dorso-ventral axis of the telencephalon with regard to the impact of these factors on the phenotype. Together these data establish a TGFBR2-dependent molecular crosstalk between neural and endothelial cells during brain vessel development. These findings will be useful to further elucidate neurovascular interaction in general and to understand pathologies of the blood vessel system such as intracerebral haemorrhages, hereditary haemorrhagic telangiectasia, Alzheimers disease, cerebral amyloid angiopathy or tumour biology.


Assuntos
Encéfalo/metabolismo , Neovascularização Fisiológica , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Movimento Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Meios de Cultivo Condicionados , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/patologia , Pericitos/metabolismo , Pericitos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Via Secretória , Telencéfalo/irrigação sanguínea , Telencéfalo/metabolismo , Telencéfalo/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Neurochem ; 130(2): 255-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24645666

RESUMO

Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFß) and insulin-like growth factor 1 (IGF1) have a central role. The TGFß- and IGF1-pathways cross-talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down-stream molecules of TGFß and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5-derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5-derived cells. TGFß has little effect at E13.5. It does not activate the PI3K- and mTOR-signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5-derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K-p110-alpha signalling. PI3K-p110-beta signalling activates mTORC2 in E16.5-derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms. Within developing cortical cells TGFß- and IGF-signalling activities are timely separated. TGFß dominates in E16.5-derived cells and drives neuronal differentiation. IGF influences survival, proliferation and neuronal differentiation in E13.5-derived cells. mTORC2-signalling in E16.5-derived cells influences survival, proliferation and differentiation, activated through PI3K-p110-alpha. PI3K-p110-beta-signalling activates a different mTORC2. Both PI3K/mTORC2-signalling pathways are required but not directly activated in TGFß-mediated neuronal differentiation.


Assuntos
Proliferação de Células , Sobrevivência Celular/fisiologia , Complexos Multiproteicos/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Western Blotting , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Análise em Microsséries , Gravidez , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptor IGF Tipo 1/fisiologia , Fator de Crescimento Transformador beta/fisiologia
13.
Cell Tissue Res ; 356(3): 507-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24820400

RESUMO

Long-non-coding RNA (lncRNA) regulates gene expression through transcriptional and epigenetic regulation as well as alternative splicing in the nucleus. In addition, regulation is achieved at the levels of mRNA translation, storage and degradation in the cytoplasm. During recent years, several studies have described the interaction of lncRNAs with enzymes that confer so-called epigenetic modifications, such as DNA methylation, histone modifications and chromatin structure or remodelling. LncRNA interaction with chromatin-modifying enzymes (CME) is an emerging field that confers another layer of complexity in transcriptional regulation. Given that CME-lncRNA interactions have been identified in many biological processes, ranging from development to disease, comprehensive understanding of underlying mechanisms is important to inspire basic and translational research in the future. In this review, we highlight recent findings to extend our understanding about the functional interdependencies between lncRNAs and CMEs that activate or repress gene expression. We focus on recent highlights of molecular and functional roles for CME-lncRNAs and provide an interdisciplinary overview of recent technical and methodological developments that have improved biological and bioinformatical approaches for detection and functional studies of CME-lncRNA interaction.


Assuntos
Cromatina/metabolismo , Epigênese Genética/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , RNA Longo não Codificante/metabolismo , Transcrição Gênica/fisiologia , Animais , Cromatina/genética , Metilação de DNA/fisiologia , Humanos , RNA Longo não Codificante/genética
14.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342310

RESUMO

BACKGROUND: Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS: We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS: Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS: Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.


Assuntos
Células-Tronco Embrionárias Murinas , Fatores de Transcrição , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo
15.
iScience ; 27(7): 110215, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38993675

RESUMO

The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.

16.
Proc Natl Acad Sci U S A ; 107(15): 7042-7, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20348416

RESUMO

Mutations of leukemia-associated AF9/MLLT3 are implicated in neurodevelopmental diseases, such as epilepsy and ataxia, but little is known about how AF9 influences brain development and function. Analyses of mouse mutants revealed that during cortical development, AF9 is involved in the maintenance of TBR2-positive progenitors (intermediate precursor cells, IPCs) in the subventricular zone and prevents premature cell cycle exit of IPCs. Furthermore, in postmitotic neurons of the developing cortical plate, AF9 is implicated in the formation of the six-layered cerebral cortex by suppressing a TBR1-positive cell fate mainly in upper layer neurons. We show that the molecular mechanism of TBR1 suppression is based on the interaction of AF9 with DOT1L, a protein that mediates transcriptional control through methylation of histone H3 lysine 79 (H3K79). AF9 associates with the transcriptional start site of Tbr1, mediates H3K79 dimethylation of the Tbr1 gene, and interferes with the presence of RNA polymerase II at the Tbr1 transcriptional start site. AF9 expression favors cytoplasmic localization of TBR1 and its association with mitochondria. Increased expression of TBR1 in Af9 mutants is associated with increased levels of TBR1-regulated expression of NMDAR subunit Nr1. Thus, this study identified AF9 as a developmental active epigenetic modifier during the generation of cortical projection neurons.


Assuntos
Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas/metabolismo , Metilação de DNA , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Neurônios/metabolismo , Proteínas com Domínio T
17.
Epigenetics Chromatin ; 16(1): 36, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759327

RESUMO

BACKGROUND: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS: We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS: Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.


Assuntos
Heterocromatina , Histonas , Cromatina , DNA , Histonas/metabolismo , Nucleofosmina , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Camundongos
18.
Neuron ; 57(3): 378-92, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18255031

RESUMO

Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Mitose/fisiologia , Neocórtex/citologia , Neurônios/fisiologia , Fatores de Transcrição/fisiologia , Animais , Carbocianinas/metabolismo , Diferenciação Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Eletroporação/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
19.
Cereb Cortex ; 20(3): 661-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19587023

RESUMO

Transforming Growth Factor beta (Tgfbeta) and associated signaling effectors are expressed in the forebrain, but little is known about the role of this multifunctional cytokine during forebrain development. Using hippocampal and cortical primary cell cultures of developing mouse brains, this study identified Tgfbeta-regulated genes not only associated with cell cycle exit of progenitors but also with adoption of neuronal cell fate. Accordingly, we observed not only an antimitotic effect of Tgfbeta on progenitors but also an increased expression of neuronal markers in Tgfbeta treated cultures. This effect was dependent upon Smad4. Furthermore, in vivo loss-of-function analyses using Tgfbeta2(-/-)/Tgfbeta3(-/-) double mutant mice showed the opposite effect of increased cell proliferation and fewer neurons in the cerebral cortex and hippocampus. Gata2, Runx1, and Nedd9 were candidate genes regulated by Tgfbeta and known to be involved in developmental processes of neuronal progenitors. Using siRNA-mediated knockdown, we identified Nedd9 as an essential signaling component for the Tgfbeta-dependent increase in neuronal cell fate. Expression of this scaffolding protein, which is mainly described as a signaling molecule of the beta1-integrin pathway, was not only induced after Tgfbeta treatment but was also associated with morphological changes of the Nestin-positive progenitor pool observed upon exposure to Tgfbeta.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/citologia , Células-Tronco Embrionárias/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/farmacologia
20.
Sci Rep ; 11(1): 9403, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931726

RESUMO

Deep generative models, such as variational autoencoders (VAEs) or deep Boltzmann machines (DBMs), can generate an arbitrary number of synthetic observations after being trained on an initial set of samples. This has mainly been investigated for imaging data but could also be useful for single-cell transcriptomics (scRNA-seq). A small pilot study could be used for planning a full-scale experiment by investigating planned analysis strategies on synthetic data with different sample sizes. It is unclear whether synthetic observations generated based on a small scRNA-seq dataset reflect the properties relevant for subsequent data analysis steps. We specifically investigated two deep generative modeling approaches, VAEs and DBMs. First, we considered single-cell variational inference (scVI) in two variants, generating samples from the posterior distribution, the standard approach, or the prior distribution. Second, we propose single-cell deep Boltzmann machines (scDBMs). When considering the similarity of clustering results on synthetic data to ground-truth clustering, we find that the [Formula: see text] variant resulted in high variability, most likely due to amplifying artifacts of small datasets. All approaches showed mixed results for cell types with different abundance by overrepresenting highly abundant cell types and missing less abundant cell types. With increasing pilot dataset sizes, the proportions of the cells in each cluster became more similar to that of ground-truth data. We also showed that all approaches learn the univariate distribution of most genes, but problems occurred with bimodality. Across all analyses, in comparing 10[Formula: see text] Genomics and Smart-seq2 technologies, we could show that for 10[Formula: see text] datasets, which have higher sparsity, it is more challenging to make inference from small to larger datasets. Overall, the results show that generative deep learning approaches might be valuable for supporting the design of scRNA-seq experiments.


Assuntos
Aprendizado Profundo , Análise de Sequência de RNA , Análise de Célula Única , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA