Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 537(7619): 249-253, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580032

RESUMO

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Assuntos
Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrômero/química , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fuso Acromático
2.
PLoS One ; 10(12): e0144673, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658523

RESUMO

The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/metabolismo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química , Serina/genética , Serina/metabolismo , Células Sf9 , Spodoptera , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA