Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 131(6): 636-648, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29191918

RESUMO

A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.


Assuntos
Reparo do DNA/genética , Corpos de Inclusão Intranuclear/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Proteína da Leucemia Promielocítica/fisiologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Corpos de Inclusão Intranuclear/genética , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína da Leucemia Promielocítica/genética , Transdução de Sinais/genética
2.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 105-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28939057

RESUMO

The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.


Assuntos
Quinases relacionadas a CDC2 e CDC28/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais/genética
3.
Nat Commun ; 14(1): 3079, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248212

RESUMO

Cancer cells utilize the main de novo pathway and the alternative salvage pathway for deoxyribonucleotide biosynthesis to achieve adequate nucleotide pools. Deoxycytidine kinase is the rate-limiting enzyme of the salvage pathway and it has recently emerged as a target for anti-proliferative therapies for cancers where it is essential. Here, we present the development of a potent inhibitor applying an iterative multidisciplinary approach, which relies on computational design coupled with experimental evaluations. This strategy allows an acceleration of the hit-to-lead process by gradually implementing key chemical modifications to increase affinity and activity. Our lead compound, OR0642, is more than 1000 times more potent than its initial parent compound, masitinib, previously identified from a drug repositioning approach. OR0642 in combination with a physiological inhibitor of the de novo pathway doubled the survival rate in a human T-cell acute lymphoblastic leukemia patient-derived xenograft mouse model, demonstrating the proof-of-concept of this drug design strategy.


Assuntos
Reposicionamento de Medicamentos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Camundongos , Humanos , Animais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Nucleotídeos , Desenho de Fármacos , Modelos Animais de Doenças
4.
J Biol Chem ; 286(8): 5956-66, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21135090

RESUMO

Mutations in the c-kit gene occur in the vast majority of mastocytosis. In adult patients as well as in the cell line derived from mast cell neoplasms, the mutations occur almost exclusively at amino acid 816 within the kinase domain of KIT. Among the downstream effectors of KIT signaling, STAT3 and STAT5 have been shown to be critical for cell proliferation elicited by the KIT-Asp(816) mutant protein. However, little is known about the mechanisms of activation of STAT proteins. In this study, we identify and clarify the contribution of various STAT kinases in two widely used neoplastic mast cell lines, P815 and HMC-1. We show that STAT1, -3, and -5 proteins are activated downstream of the KIT-Asp(816) mutant. All three STAT proteins are located in the nucleus and are phosphorylated on serine residues. KIT-Asp(816) mutant can directly phosphorylate STATs on the activation-specific tyrosine residues in vitro. However, within cells, SRC family kinases and JAKs diversely contribute to tyrosine phosphorylation of STAT proteins downstream of the KIT mutant. Using a panel of inhibitors, we provide evidence for the implication or exclusion of serine/threonine kinases as responsible for serine phosphorylation of STAT1, -3, and -5 in the two cell lines. Finally, we show that only STAT5 is transcriptionally active in these cells. This suggests that the contribution of STAT1 and STAT3 downstream of KIT mutant is independent of their transcription factor function.


Assuntos
Proliferação de Células , Mastócitos/metabolismo , Mastocitose/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Adulto , Animais , Células COS , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Chlorocebus aethiops , Humanos , Mastócitos/patologia , Mastocitose/genética , Mastocitose/patologia , Camundongos , Mutação , Fosforilação/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-kit/genética , Fatores de Transcrição STAT/genética , Transcrição Gênica/genética
5.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393954

RESUMO

Mutation of the TET2 DNA-hydroxymethylase has been associated with a number of immune pathologies. The disparity in phenotype and clinical presentation among these pathologies leads to questions regarding the role of TET2 mutation in promoting disease evolution in different immune cell types. Here we show that, in primary mast cells, Tet2 expression is induced in response to chronic and acute activation signals. In TET2-deficient mast cells, chronic activation via the oncogenic KITD816V allele associated with mastocytosis, selects for a specific epigenetic signature characterized by hypermethylated DNA regions (HMR) at immune response genes. H3K27ac and transcription factor binding is consistent with priming or more open chromatin at both HMR and non-HMR in proximity to immune genes in these cells, and this signature coincides with increased pathological inflammation signals. HMR are also associated with a subset of immune genes that are direct targets of TET2 and repressed in TET2-deficient cells. Repression of these genes results in immune tolerance to acute stimulation that can be rescued with vitamin C treatment or reiterated with a Tet inhibitor. Overall, our data support a model where TET2 plays a direct role in preventing immune tolerance in chronically activated mast cells, supporting TET2 as a viable target to reprogram the innate immune response for innovative therapies.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Tolerância Imunológica , Mastócitos , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Mastócitos/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
6.
PLoS One ; 16(12): e0260852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855882

RESUMO

Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/patologia , Dano ao DNA , Reparo do DNA , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Feminino , Testes Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
7.
Biochem Biophys Res Commun ; 393(1): 174-8, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20117079

RESUMO

FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.


Assuntos
Quimiotaxia , Proteínas Proto-Oncogênicas c-fes/metabolismo , Fator de Células-Tronco/metabolismo , Domínios de Homologia de src , Adesão Celular , Linhagem Celular Tumoral , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-fes/genética , Técnicas do Sistema de Duplo-Híbrido , Tirosina
8.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708273

RESUMO

Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.

10.
Oncotarget ; 7(32): 51163-51173, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27323399

RESUMO

CDK4/CDK6 and RB proteins drive the progression through the G1 phase of the cell cycle. In acute myeloid leukemia (AML), the activity of the CDK/Cyclin D complex is increased. The mechanism involved is unknown, as are the respective roles played by CDK4 or CDK6 in this process. Here, we report that AML cells carrying FLT3-ITD mutations are dependent on CDK6 for cell proliferation while CDK4 is not essential. We showed that FLT3-ITD signaling is responsible for CDK6 overexpression, through a pathway involving the SRC-family kinase HCK. Accordingly, FLT3-ITD failed to transform primary hematopoietic progenitor cells from Cdk6-/- mice. Our results demonstrate that CDK6 is the primary target of CDK4/CDK6 inhibitors in FLT3-ITD positive AML. Furthermore, we delineate an essential protein kinase pathway -FLT3/HCK/CDK6- in the context of AML with FLT3-ITD mutations.


Assuntos
Quinase 6 Dependente de Ciclina/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-hck/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas c-hck/metabolismo , Transdução de Sinais/genética , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/metabolismo
11.
PLoS One ; 8(11): e78911, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265727

RESUMO

Lung cancer is the cause of most cancer-related deaths in the Western world. Non-small cell lung cancer accounts for almost 80% of all lung cancers, and 50% of this type are adenocarcinomas. The cellular and molecular origin of this type of lung cancer remains elusive and the mechanisms are poorly known. It is known that K-Ras mutations appear in 25-30% of lung adenocarcinomas and it is the best known single mutation that can be related to lung cancers. Recently, it has been suggested that a putative population of mouse bronchioalveolar stem cells could be considered as the cell of origin of adenocarcinomas. These cells are expanded in the early stages of lung tumorigenesis. We have isolated a population of mouse bronchioalveolar stem cells and induced their transformation by oncogenic K-RasG12. Different approaches have shown that an intracellular network linking the p38α MAPK and the PI3K-Pdk1 pathways is involved in regulating the survival and malignant progression of the transformed cells. Absence of p38α catalytic activity leads to further Pdk1 activation (independent of Akt and Erk activity), enhancing the survival and proliferation of the more malignant lung cancer cells. This specifically selects high Sca-1/Sox9 cells that harbour a stronger colonizing potential, as they maintain their capacity to produce secondary tumors after serial transplantations.


Assuntos
Transformação Celular Neoplásica/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antígenos Ly/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Humanos , Imunofenotipagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
12.
PLoS One ; 4(9): e7258, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19789626

RESUMO

BACKGROUND: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC(50)) of 200+/-40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC(50) of 150+/-80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. CONCLUSIONS: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Benzamidas , Células da Medula Óssea/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Modelos Moleculares , Mutação , Piperidinas , Piridinas , Proteínas Recombinantes/química , Tiazóis/farmacologia
13.
Blood ; 110(7): 2593-9, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17595334

RESUMO

KIT is a tyrosine kinase receptor that is aberrantly activated in several neoplasms. In human pathologies, the most frequent mutation of KIT occurs at codon 816. The resulting KIT mutant protein is activated in the absence of ligand and is resistant to the clinically available inhibitors of KIT. In this report, we provide evidence for an essential function of the cytoplasmic tyrosine kinase FES downstream of KIT(D816V). FES is phosphorylated on tyrosine residues in cells that carry KIT(D816V) mutation, and this phosphorylation is KIT dependent. Reduction of FES expression using RNA interference results in decreased cell proliferation in human or murine cells harboring KIT(D816V) or the homologous mouse mutation KIT(D814Y). The reduced cell growth can be rescued using another cytokine (granulocyte-macrophage colony-stimulating factor [GM-CSF]) and is not observed when the closely related fer gene is targeted. Finally, signaling downstream of KIT(D816V) is altered in cells lacking FES expression. This study shows a major function of FES downstream of activated KIT receptor and thereby points to FES as a novel target in KIT-related pathologies.


Assuntos
Ácido Aspártico/metabolismo , Proteínas Proto-Oncogênicas c-fes/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Animais , Ácido Aspártico/genética , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Fase G1 , Humanos , Camundongos , Mutação/genética , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fase S , Fatores de Transcrição STAT/classificação , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA