Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(7): 9039-9048, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225517

RESUMO

We report on the crystal growth, spectroscopy and first laser operation of a novel double molybdate compound - Tm:KY(MoO4)2. This orthorhombic (sp. gr. Pbna) crystal exhibits strong anisotropy of the spectroscopic properties due to its layered structure. The maximum stimulated emission cross-section for the 3F4 → 3H6 transition is 2.70×10-20 cm2 at 1856nm with a bandwidth of >110 nm (for E || b). The lifetime of the 3F4 state is 2.29 ms. Crystalline films and plates (thickness down to 70 µm) of high optical quality are obtained by mechanical cleavage along the (100) plane. Continuous-wave diode-pumped laser operation is achieved in such thin films and plates yielding a maximum output power of 0.88 W at ∼1.9 µm with a slope efficiency of 65.8% and a linearly polarized laser output. Vibronic lasing is demonstrated at ∼2.06 µm. Tm:KY(MoO4)2 is promising for microchip and thin-disk lasers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35537096

RESUMO

We report an in situ study of the thin-film growth of cobalt-phthalocyanine on Ag(100) surfaces using photoelectron emission microscopy (PEEM) and the Anderson method. Based on the Fowler-DuBridge theory, we were able to correlate the evolution of the mean electron yield acquired with PEEM for coverages up to two molecular layers of cobalt-phthalocyanine to the global work function changes measured with the Anderson method. For coverages above two monolayers, the transients measured with the Anderson method and those obtained with PEEM show different trends. We exploit this discrepancy to determine the inelastic mean free path of the low-energy electrons while passing through the third layer of CoPc.

3.
Ultramicroscopy ; 233: 113427, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34990906

RESUMO

Photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM) can easily distinguish between organic molecules adsorbed in crystallites or in the wetting layers as well as the bare metal substrate due to their different electronic properties. Already before (and during) the condensation of such solid phases (2D islands or 3D crystallites), there is a dilute 2D gas phase. Such a 2D gas phase consists of molecules, which are highly mobile and diffuse across the surface. The individual molecules are too small to be resolved in PEEM/LEEM images. Here, we discuss, how image features below and above the resolution limit of a PEEM/LEEM affect the mean electron yield and its (normalized) standard deviation. We support our findings with two experimental examples: the deposition of cobalt phthalocyanine (CoPc) on Ag(100) and of perfluoro-pentacene on Ag(110). Our results demonstrate, how a spatial and temporal analysis of image series can be used to obtain information about molecular phases, which cannot be directly resolved in microscopy images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA