Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Neurosci ; 43(3): 501-521, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639889

RESUMO

The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.


Assuntos
Glucosilceramidase , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Hipocampo/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/patologia
2.
Neurobiol Dis ; 199: 106595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972360

RESUMO

Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos Endogâmicos C57BL , Sinapses , alfa-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Sinapses/patologia , Sinapses/metabolismo
3.
J Neuroinflammation ; 21(1): 216, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218899

RESUMO

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.


Assuntos
Modelos Animais de Doenças , Doenças Neuroinflamatórias , Doença de Parkinson , Fatores de Transcrição STAT , Transdução de Sinais , alfa-Sinucleína , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/imunologia , Humanos , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/imunologia , Pirimidinas/farmacologia
4.
Neurobiol Dis ; 187: 106287, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704058

RESUMO

In Parkinson's disease (PD), post-mortem studies in affected brain regions have demonstrated a decline in mitochondrial number and function. This combined with many studies in cell and animal models suggest that mitochondrial dysfunction is central to PD pathology. We and others have shown that the mitochondrial protein deacetylase, SIRT3, has neurorestorative effects in PD models. In this study, to determine whether there is a link between PD pathology and SIRT3, we analysed SIRT3 levels in human subjects with PD, and compared to age-matched controls. In the SNc of PD subjects, SIRT3 was reduced by 56.8 ± 15.5% compared to control, regardless of age (p < 0.05, R = 0.6539). Given that age is the primary risk factor for PD, this finding suggests that reduced SIRT3 may contribute to PD pathology. Next, we measured whether there was a correlation between α-synuclein and SIRT3. In a parallel study, we assessed the disease-modifying potential of SIRT3 over-expression in a seeding model of α-synuclein. In PFF rats, infusion of rAAV1.SIRT3-myc reduced abundance of α-synuclein inclusions by 30.1 ± 18.5%. This was not observed when deacetylation deficient SIRT3H248Y was transduced, demonstrating the importance of SIRT3 deacetylation in reducing α-synuclein aggregation. These studies confirm that there is a clear difference in SIRT3 levels in subjects with PD compared to age-matched controls, suggesting a link between SIRT3 and the progression of PD. We also demonstrate that over-expression of SIRT3 reduces α-synuclein aggregation, further validating AAV.SIRT3-myc as a potential disease-modifying solution for PD.

5.
Proc Natl Acad Sci U S A ; 116(48): 24310-24316, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31685606

RESUMO

Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein and its deposition into pathologic Lewy bodies. While extensive research has been carried out on mediators of α-synuclein aggregation, molecular facilitators of α-synuclein disaggregation are still generally unknown. We investigated the role of molecular chaperones in both preventing and disaggregating α-synuclein oligomers and fibrils, with a focus on the mammalian disaggregase complex. Here, we show that overexpression of the chaperone Hsp110 is sufficient to reduce α-synuclein aggregation in a mammalian cell culture model. Additionally, we demonstrate that Hsp110 effectively mitigates α-synuclein pathology in vivo through the characterization of transgenic Hsp110 and double-transgenic α-synuclein/Hsp110 mouse models. Unbiased analysis of the synaptic proteome of these mice revealed that overexpression of Hsp110 can override the protein changes driven by the α-synuclein transgene. Furthermore, overexpression of Hsp110 is sufficient to prevent endogenous α-synuclein templating and spread following injection of aggregated α-synuclein seeds into brain, supporting a role for Hsp110 in the prevention and/or disaggregation of α-synuclein pathology.


Assuntos
Encéfalo/patologia , Proteínas de Choque Térmico HSP110/metabolismo , Doença de Parkinson/etiologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Humanos , Camundongos Transgênicos , Doença de Parkinson/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Sinucleinopatias/genética , Sinucleinopatias/mortalidade , Sinucleinopatias/patologia , alfa-Sinucleína/genética
6.
Proc Natl Acad Sci U S A ; 115(11): E2634-E2643, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29487216

RESUMO

Exposure of cultured primary neurons to preformed α-synuclein fibrils (PFFs) leads to the recruitment of endogenous α-synuclein and its templated conversion into fibrillar phosphorylated α-synuclein (pα-synF) aggregates resembling those involved in Parkinson's disease (PD) pathogenesis. Pα-synF was described previously as inclusions morphologically similar to Lewy bodies and Lewy neurites in PD patients. We discovered the existence of a conformationally distinct, nonfibrillar, phosphorylated α-syn species that we named "pα-syn*." We uniquely describe the existence of pα-syn* in PFF-seeded primary neurons, mice brains, and PD patients' brains. Through immunofluorescence and pharmacological manipulation we showed that pα-syn* results from incomplete autophagic degradation of pα-synF. Pα-synF was decorated with autophagic markers, but pα-syn* was not. Western blots revealed that pα-syn* was N- and C-terminally trimmed, resulting in a 12.5-kDa fragment and a SDS-resistant dimer. After lysosomal release, pα-syn* aggregates associated with mitochondria, inducing mitochondrial membrane depolarization, cytochrome C release, and mitochondrial fragmentation visualized by confocal and stimulated emission depletion nanoscopy. Pα-syn* recruited phosphorylated acetyl-CoA carboxylase 1 (ACC1) with which it remarkably colocalized. ACC1 phosphorylation indicates low ATP levels, AMPK activation, and oxidative stress and induces mitochondrial fragmentation via reduced lipoylation. Pα-syn* also colocalized with BiP, a master regulator of the unfolded protein response and a resident protein of mitochondria-associated endoplasmic reticulum membranes that are sites of mitochondrial fission and mitophagy. Pα-syn* aggregates were found in Parkin-positive mitophagic vacuoles and imaged by electron microscopy. Collectively, we showed that pα-syn* induces mitochondrial toxicity and fission, energetic stress, and mitophagy, implicating pα-syn* as a key neurotoxic α-syn species and a therapeutic target.


Assuntos
Autofagia/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Neurotoxinas , Doença de Parkinson/metabolismo , alfa-Sinucleína , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Química Encefálica , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Lisossomos/metabolismo , Camundongos , Mitocôndrias , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
7.
J Biol Chem ; 294(27): 10392-10406, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142553

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions composed of aggregated α-synuclein (α-syn). These inclusions are associated with behavioral and pathological PD phenotypes. One strategy for therapeutic interventions is to prevent the formation of these inclusions to halt disease progression. α-Synuclein exists in multiple structural forms, including disordered, nonamyloid oligomers, ordered amyloid oligomers, and fibrils. It is critical to understand which conformers contribute to specific PD phenotypes. Here, we utilized a mouse model to explore the pathological effects of stable ß-amyloid-sheet oligomers compared with those of fibrillar α-synuclein. We biophysically characterized these species with transmission EM, atomic-force microscopy, CD spectroscopy, FTIR spectroscopy, analytical ultracentrifugation, and thioflavin T assays. We then injected these different α-synuclein forms into the mouse striatum to determine their ability to induce PD-related phenotypes. We found that ß-sheet oligomers produce a small but significant loss of dopamine neurons in the substantia nigra pars compacta (SNc). Injection of small ß-sheet fibril fragments, however, produced the most robust phenotypes, including reduction of striatal dopamine terminals, SNc loss of dopamine neurons, and motor-behavior defects. We conclude that although the ß-sheet oligomers cause some toxicity, the potent effects of the short fibrillar fragments can be attributed to their ability to recruit monomeric α-synuclein and spread in vivo and hence contribute to the development of PD-like phenotypes. These results suggest that strategies to reduce the formation and propagation of ß-sheet fibrillar species could be an important route for therapeutic intervention in PD and related disorders.


Assuntos
Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Doença de Parkinson/metabolismo , Fenótipo , Agregados Proteicos , Conformação Proteica em Folha beta , alfa-Sinucleína/química , alfa-Sinucleína/farmacologia
8.
Neurobiol Dis ; 134: 104708, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837424

RESUMO

Parkinson's disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, postural instability, and stiffness. In addition to the classical motor defects that define PD, up to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the cortex and limbic brain regions such as the amygdala, which may contribute to non-motor phenotypes. Little is known about the consequences of α-synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected mice show defects in a social dominance behavioral task and fear conditioning, tasks that are associated with prefrontal cortex and amygdala function. Together, these observations suggest that seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala function, without causing cell loss, in brain areas that may play important roles in the complex cognitive features of PDD.


Assuntos
Tonsila do Cerebelo/patologia , Comportamento Animal/fisiologia , Córtex Cerebral/patologia , Corpos de Inclusão/patologia , alfa-Sinucleína/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Condicionamento Clássico , Corpo Estriado/efeitos dos fármacos , Feminino , Corpos de Inclusão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Teste de Desempenho do Rota-Rod , alfa-Sinucleína/administração & dosagem
9.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126694

RESUMO

α-Synuclein amyloid aggregation is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple system atrophy, but can also be found in other neurodegenerative disorders such as Alzheimer's disease. The process of α-synuclein aggregation can be initiated through alternative nucleation mechanisms and dominated by different secondary processes giving rise to multiple amyloid polymorphs and intermediate species. Some aggregated species have more inherent abilities to induce cellular stress and toxicity, while others seem to be more potent in propagating neurodegeneration. The preference for particular types of polymorphs depends on the solution conditions and the cellular microenvironment that the protein encounters, which is likely related to the distinct cellular locations of α-synuclein inclusions in different synucleinopathies, and the existence of disease-specific amyloid polymorphs. In this review, we discuss our current understanding on the nature and structure of the various types of α-synuclein aggregated species and their possible roles in pathology. Precisely defining these distinct α-synuclein species will contribute to understanding the molecular origins of these disorders, developing accurate diagnoses, and designing effective therapeutic interventions for these highly debilitating neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Amiloide/química , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , alfa-Sinucleína/química , Doença de Alzheimer/metabolismo , Animais , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
10.
J Neurosci ; 38(38): 8211-8232, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30093536

RESUMO

α-Synuclein (αsyn) is the key protein that forms neuronal aggregates in the neurodegenerative disorders Parkinson's disease (PD) and dementia with Lewy bodies. Recent evidence points to the prion-like spread of αsyn from one brain region to another. Propagation of αsyn is likely dependent on release, uptake, and misfolding. Under normal circumstances, this highly expressed brain protein functions normally without promoting pathology, yet the underlying endogenous mechanisms that prevent αsyn spread are not understood. 14-3-3 proteins are highly expressed brain proteins that have chaperone function and regulate protein trafficking. In this study, we investigated the potential role of the 14-3-3 proteins in the regulation of αsyn spread using two models of αsyn spread. In a paracrine αsyn model, 14-3-3θ promoted release of αsyn complexed with 14-3-3θ. Despite higher amounts of released αsyn, extracellular αsyn showed reduced oligomerization and seeding capability, reduced internalization, and reduced toxicity in primary mixed-gender mouse neurons. 14-3-3 inhibition reduced the amount of αsyn released, yet released αsyn was more toxic and demonstrated increased oligomerization, seeding capability, and internalization. In the preformed fibril model, 14-3-3 θ reduced αsyn aggregation and neuronal death, whereas 14-3-3 inhibition enhanced αsyn aggregation and neuronal death in primary mouse neurons. 14-3-3s blocked αsyn spread to distal chamber neurons not exposed directly to fibrils in multichamber, microfluidic devices. These findings point to 14-3-3s as a direct regulator of αsyn propagation, and suggest that dysfunction of 14-3-3 function may promote αsyn pathology in PD and related synucleinopathies.SIGNIFICANCE STATEMENT Transfer of misfolded aggregates of α-synuclein from one brain region to another is implicated in the pathogenesis of Parkinson's disease and other synucleinopathies. This process is dependent on active release, internalization, and misfolding of α-synuclein. 14-3-3 proteins are highly expressed chaperone proteins that interact with α-synuclein and regulate protein trafficking. We used two different models in which toxicity is associated with cell-to-cell transfer of α-synuclein to test whether 14-3-3s impact α-synuclein toxicity. We demonstrate that 14-3-3θ reduces α-synuclein transfer and toxicity by inhibiting oligomerization, seeding capability, and internalization of α-synuclein, whereas 14-3-3 inhibition accelerates the transfer and toxicity of α-synuclein in these models. Dysfunction of 14-3-3 function may be a critical mechanism by which α-synuclein propagation occurs in disease.


Assuntos
Proteínas 14-3-3/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Camundongos , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transporte Proteico/fisiologia
11.
Neurobiol Dis ; 124: 248-262, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472299

RESUMO

We recently identified a truncated and phosphorylated form of α-synuclein, pα-syn*, as a key neurotoxic α-synuclein species found in cultured neurons, as well as in mouse and Parkinson's disease patients' brains. Small pα-syn* aggregates localize to mitochondria and induce mitochondrial damage and fragmentation. Herein, we investigated the molecular basis of pα-syn*-induced toxicity. By immunofluorescence, we found phosphorylated MKK4, JNK, ERK5 and p38 MAPKs in pα-syn* inclusions. pJNK colocalized with pα-syn* at mitochondria and mitochondria-associated ER membranes where it was associated with BiP and pACC1, markers for the ER and energy deprivation, respectively. We also found that pα-syn* aggregates are tightly associated with small ptau aggregates of similar size. Pα-syn*/ptau inclusions localized to areas of mitochondrial damage and to mitophagic vesicles, showing their role in mitochondrial toxicity, mitophagy induction and their removal along with damaged mitochondrial fragments. Several MAPKs may act cooperatively to phosphorylate tau, notably JNK, p38 and GSK3ß, a non-MAPK that was also found phosphorylated in the vicinity of pα-syn*/ptau aggregates. These results add insight into the mechanisms by which pα-syn* exerts its toxic effects that include the phosphorylation of several kinases of the MAPK pathway, as well as the formation of ptau at the mitochondrial membrane, likely contributing to mitotoxicity. Thus pα-syn* appears to be the trigger of a series of kinase mediated pathogenic events and a link between α-syn pathology and tau, another protein known to aggregate in Parkinson's disease and other synucleinopathies.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Fosforilação
12.
Mov Disord ; 34(10): 1406-1422, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483900

RESUMO

While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Animais , Axônios/metabolismo , Pareamento Cromossômico/fisiologia , Humanos
13.
Brain ; 146(12): 4794-4795, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967242
14.
J Neurosci ; 36(8): 2383-90, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911687

RESUMO

Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.


Assuntos
Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , MicroRNAs/fisiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson/patologia
15.
J Neurosci ; 36(28): 7415-27, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413152

RESUMO

UNLABELLED: Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT: α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Assuntos
Corpos de Inclusão/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Neurônios/metabolismo , Transcitose/fisiologia , alfa-Sinucleína/metabolismo , Animais , Regulação da Expressão Gênica/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligorribonucleotídeos Antissenso/farmacologia , Fotodegradação , Ratos , Sinucleínas/metabolismo , Transcitose/genética , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
16.
Neurobiol Dis ; 105: 321-327, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27956085

RESUMO

Lewy bodies and Lewy neurites composed primarily of α-synuclein characterize synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). Despite decades of research on the impact of α-synuclein, little is known how abnormal inclusion made of this protein compromise neuronal function. Emerging evidence suggests that defects in axonal transport caused by aggregated α-synuclein contribute to neuronal dysfunction. These defects appear to occur well before the onset of neuronal death. Susceptible neurons in PD such as dopamine neurons with long elaborate axons may be particularly sensitive to abnormal axonal transport. Axonal transport is critical for delivery of signaling molecules to the soma responsible for neuronal differentiation and survival. In addition, axonal transport delivers degradative organelles such as endosomes and autophagosomes to lysosomes located in the soma to degrade damaged proteins and organelles. Identifying the molecular mechanisms by which axonal transport is impaired in PD and DLB may help identify novel therapeutic targets to enhance neuron survival and even possibly prevent disease progression. Here, we review the evidence that axonal transport is impaired in synucleinopathies, and describe potential mechanisms by which contribute to these defects.


Assuntos
Transporte Axonal/fisiologia , Doença por Corpos de Lewy , Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia
17.
Neurobiol Dis ; 105: 84-98, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28576704

RESUMO

Proteinaceous inclusions in neurons, composed primarily of α-synuclein, define the pathology in several neurodegenerative disorders. Neurons can internalize α-synuclein fibrils that can seed new inclusions from endogenously expressed α-synuclein. The factors contributing to the spread of pathology and subsequent neurodegeneration are not fully understood, and different compositions and concentrations of fibrils have been used in different hosts. Here, we systematically vary the concentration and length of well-characterized α-synuclein fibrils and determine their relative ability to induce inclusions and neurodegeneration in different hosts (primary neurons, C57BL/6J and C3H/HeJ mice, and Sprague Dawley rats). Using dynamic-light scattering profiles and other measurements to determine fibril length and concentration, we find that femptomolar concentrations of fibrils are sufficient to induce robust inclusions in primary neurons. However, a narrow and non-linear dynamic range characterizes fibril-mediated inclusion induction in axons and the soma. In mice, the C3H/HeJ strain is more sensitive to fibril exposures than C57BL/6J counterparts, with more inclusions and dopaminergic neurodegeneration. In rats, injection of fibrils into the substantia nigra pars compacta (SNpc) results in similar inclusion spread and dopaminergic neurodegeneration as injection of the fibrils into the dorsal striatum, with prominent inclusion spread to the amygdala and several other brain areas. Inclusion spread, particularly from the SNpc to the striatum, positively correlates with dopaminergic neurodegeneration. These results define biophysical characteristics of α-synuclein fibrils that induce inclusions and neurodegeneration both in vitro and in vivo, and suggest that inclusion spread in the brain may be promoted by a loss of neurons.


Assuntos
Dopamina/metabolismo , Corpos de Inclusão/patologia , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Acetilcolinesterase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/ultraestrutura , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/ultraestrutura , Proteínas tau/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(25): 9289-94, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927544

RESUMO

Missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene can cause late-onset Parkinson disease. Past studies have provided conflicting evidence for the protective effects of LRRK2 knockdown in models of Parkinson disease as well as other disorders. These discrepancies may be caused by uncertainty in the pathobiological mechanisms of LRRK2 action. Previously, we found that LRRK2 knockdown inhibited proinflammatory responses from cultured microglia cells. Here, we report LRRK2 knockout rats as resistant to dopaminergic neurodegeneration elicited by intracranial administration of LPS. Such resistance to dopaminergic neurodegeneration correlated with reduced proinflammatory myeloid cells recruited in the brain. Additionally, adeno-associated virus-mediated transduction of human α-synuclein also resulted in dopaminergic neurodegeneration in wild-type rats. In contrast, LRRK2 knockout animals had no significant loss of neurons and had reduced numbers of activated myeloid cells in the substantia nigra. Although LRRK2 expression in the wild-type rat midbrain remained undetected under nonpathological conditions, LRRK2 became highly expressed in inducible nitric oxide synthase (iNOS)-positive myeloid cells in the substantia nigra in response to α-synuclein overexpression or LPS exposures. Our data suggest that knocking down LRRK2 may protect from overt cell loss by inhibiting the recruitment of chronically activated proinflammatory myeloid cells. These results may provide value in the translation of LRRK2-targeting therapeutics to conditions where neuroinflammation may underlie aspects of neuronal dysfunction and degeneration.


Assuntos
Células Mieloides/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Substância Negra/metabolismo , alfa-Sinucleína/biossíntese , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/toxicidade , Células Mieloides/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Transgênicos , Substância Negra/patologia , alfa-Sinucleína/genética
19.
J Neurosci ; 35(30): 10731-49, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224857

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a prerequisite for identifying new therapeutic targets and, ultimately, curing this disease. Here, we describe a novel pathway involving the proapoptotic protein Trib3 in neuronal death associated with PD. These findings are supported by data from multiple cellular models of PD and by immunostaining of postmortem PD brains. Upstream, Trib3 is induced by the transcription factors ATF4 and CHOP; and downstream, Trib3 interferes with the PD-associated prosurvival protein Parkin to mediate death. These findings establish this new pathway as a potential and promising therapeutic target for treatment of PD.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/biossíntese , Substância Negra/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Morte Celular/fisiologia , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Masculino , Camundongos , Células PC12 , Proteínas Serina-Treonina Quinases/biossíntese , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA