RESUMO
Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen-oxygen bond. High-valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre-catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn-Teller (J-T) distortion induced structural instability, we incorporate high-spin Mn3+ ( t 2 g 3 e g 1 ${{t}_{2g}^{3}{e}_{g}^{1}}$ ) dopant into Co4N. Mn dopants enable a surface structural transformation from Co4N to CoOOH, and finally to CoO2, as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn-doped Co4N triggers the lattice oxygen activation, as evidenced experimentally by pH-dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18O-labelled catalysts. In general, this work not only offers the introducing J-T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.
RESUMO
An efficient and cost-effective approach for the development of advanced catalysts has been regarded as a sustainable way for green energy utilization. The general guideline to design active and efficient catalysts for oxygen evolution reaction (OER) is to achieve high intrinsic activity and the exposure of more density of the interfacial active sites. The heterointerface is one of the most attractive ways that plays a key role in electrochemical water oxidation. Herein, atomically cluster-based heterointerface catalysts with strong metal support interaction (SMSI) between WMn2 O4 and TiO2 are designed. In this case, the WMn2 O4 nanoflakes are uniformly decorated by TiO2 particles to create electronic effect on WMn2 O4 nanoflakes as confirmed by X-ray absorption near edge fine structure. As a result, the engineered heterointerface requires an OER onset overpotential as low as 200 mV versus reversible hydrogen electrode, which is stable for up to 30 h of test. The outstanding performance and long-term durability are due to SMSI, the exposure of interfacial active sites, and accelerated reaction kinetics. To confirm the synergistic interaction between WMn2 O4 and TiO2 , and the modification of the electronic structure, high-resolution transmission electron microscopy (HR-TEM), X-ray photoemission spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) are used.
RESUMO
The synthesis of Co-based two-dimensional (2D) metal azolate framework nanosheets (MAF-5-CoII NS) is described using a simple hydrothermal method. The product was isostructural to MAF-5 (Zn). The as-prepared MAF-5-CoII NS exhibited high surface area (1155 m2/g), purity, and crystallinity. The MAF-5-CoII NS-modified screen-printed electrode (MAF-5-CoII NS/SPE) was used for nonenzymatic detection of glucose in diluted human blood plasma (BP) samples with phosphate buffer saline (PBS, pH 7.4) and NaOH (0.1 M, pH 13.0) solutions. The MAF-5-CoII NS nanozyme displayed good redox activity in both neutral and alkaline media with the formation of CoII/CoIII redox pair, which induced the catalytic oxidation of glucose. Under the optimized detection potential, the sensor presented a chronoamperometric current response for the oxidation of glucose with two wide concentration ranges in PBS-diluted (62.80 to 180 µM and 305 to 8055 µM) and NaOH-diluted (58.90 to 117.6 µM and 180 to 10,055 µM) BP samples, which were within the limit of blood glucose levels of diabetic patients before (4.4-7.2 mM) and after (10 mM) meals (recommended by the American Diabetes Association). The sensor has a limit of detection of ca. 0.25 and 0.05 µM, respectively, and maximum sensitivity of ca. 36.55 and 1361.65 mA/cm2/mM, respectively, in PBS- and NaOH-diluted BP samples. The sensor also displayed excellent stability in the neutral and alkaline media due to the existence of hydrophobic linkers (2-ethyl imidazole) in the MAF-5-CoII NS, good repeatability and reproducibility, and interference-free signals. Thus, MAF-5-CoII NS is a promising nanozyme for the development of the disposable type of sensor for glucose detection in human body fluids. Graphical abstract.
Assuntos
Glicemia/análise , Estruturas Metalorgânicas/química , Nanoestruturas/química , Glicemia/química , Catálise , Cobalto/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Estruturas Metalorgânicas/síntese química , Oxirredução , Reprodutibilidade dos TestesRESUMO
Colloidal quantum dots (QDs) are a fascinating class of semiconducting nanocrystals, thanks to their optical properties tunable through size and composition, and simple synthesis methods. Recently, colloidal double-emission QDs have been successfully applied as competitive optical temperature sensors, since they exhibit structure-tunable double emission, temperature-dependent photoluminescence, high quantum yield, and excellent photostability. Until now, QDs have been used as nanothermometers for in vivo biological thermal imaging, and thermal mapping in complex environments at the sub-microscale to nanoscale range. In this Review, recent progress for QD-based nanothermometers is highlighted and perspectives for future work are described.
RESUMO
Metal chalcogenide quantum dots (QDs) are among the most promising materials as light harvesters in all-inorganic systems for applications in solar cells and production of solar fuels. The electronic band structure of composite QDs formed by lead and cadmium chalcogenides directly grafted on highly oriented pyrolytic graphite surfaces through successive ionic layer absorption and reaction is investigated. Atomic force microscopy and Kelvin probe force microscopy (KPFM) are applied to investigate PbS, CdS, and PbS/CdS QD systems. The variation of the surface potential of individual QDs is measured, investigating the evolution of the electronic band structure as a function of QD size and composition. A shift of the Fermi level toward more negative values occurs when QD size is increased. The shift is more pronounced in CdS than in PbS, while the composite PbS/CdS exhibits an intermediate behavior. The calculated shift is in good agreement with the experiments. These results highlight the ability of KPFM to directly measure the electronic band structure in individual QDs of metal chalcogenide composites. This feature regulates charge dynamics in composite systems, thereby affecting device performance. This work provides valuable insights for applications in several fields, in which charge injection plays a major role.
RESUMO
Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of "giant" CdSe/Cdx Pb1-x S core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes "giant" CdSe/Cdx Pb1-x S QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100-300 K). Subsequently these thick alloyed-shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300-600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure-CdS-shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in "giant" QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs.
RESUMO
Quantum dots (QDs) are attractive systems for potential applications in future solar energy technologies, due to their optical properties which are tunable as a function of size and composition. In this study, we synthesized PbS QDs with first excitonic peak in the range 1060 to 1300 nm using a PbCl2/sulfur molar ratio of 10:1. The first excitonic absorption peak from 1300 to 950 nm of the PbS/CdS core/shell QDs can be further synthesized via the cation exchange approach. Our method resulted in high quantum yield, good stability, monodisperse QD solutions with a full surface coverage by excess Cd cations. In addition, we used our core/shell QDs in a photoelectrochemical cell for hydrogen generation. This heterostructure exhibited a saturated photocurrent as high as 3.3 mA cm-2, leading to â¼29 ml cm-2 d-1 hydrogen generation, indicating the strong potential of our core/shell QDs for applications in water splitting.
RESUMO
This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells.
RESUMO
Core-shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150-373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy.
Assuntos
Materiais Biocompatíveis/síntese química , Medições Luminescentes/instrumentação , Pontos Quânticos , Termografia/instrumentação , Transdutores , Materiais Biocompatíveis/normas , Calibragem , Desenho de Equipamento , Análise de Falha de Equipamento , Medições Luminescentes/normas , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura , Termografia/normasRESUMO
Solar water evaporation offers a promising solution to address global water scarcity, utilizing renewable energy for purification and desalination. Transition-metal selenite hydrates (specifically nickel and cobalt) have shown potential as solar absorbers with high evaporation rates of 1.83 and 2.34 kgâm-2âh-1, but the reported discrepancy in evaporation rate deserves further investigation. This investigation aims to clarify their thermal stability for applications and determine the underlying mechanisms responsible for the differences. Nickel and cobalt selenite hydrate compositions were synthesized and investigated via thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy to assess their temperature-induced structural and compositional variations. The results reveal distinct phase transitions and structural alterations under various temperature conditions for these two photothermal materials, providing valuable insights into the factors influencing water transportation and evaporation rates.
RESUMO
An inorganic wide-bandgap hole transport layer (HTL), copper(I) thiocyanate (CuSCN), is employed in inorganic planar hydrothermally deposited Sb2S3 solar cells. With excellent hole transport properties and uniform compact morphology, the solution-processed CuSCN layer suppresses the leakage current and improves charge selectivity in an n-i-p-type solar cell structure. The device without the HTL (FTO/CdS/Sb2S3/Au) delivers a modest power conversion efficiency (PCE) of 1.54%, which increases to 2.46% with the introduction of CuSCN (FTO/CdS/Sb2S3/CuSCN/Au). This PCE is a significant improvement compared with the previous reports of planar Sb2S3 solar cells employing CuSCN. CuSCN is therefore a promising alternative to expensive and inherently unstable organic HTLs. In addition, CuSCN makes an excellent optically transparent (with average transmittance >90% in the visible region) and shunt-blocking HTL layer in pinhole-prone ultrathin (<100 nm) semitransparent absorber layers grown by green and facile hydrothermal deposition. A semitransparent device is fabricated using an ultrathin Au layer (â¼10 nm) with a PCE of 2.13% and an average visible transmittance of 13.7%.
RESUMO
Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics. Ni-HCF nanocubes are fully characterized and their optical and electrochemical properties are investigated. Preliminary tests are also carried out to photocatalytically remove metronidazole (MDZ), an antibiotic that is difficult to degrade and has become a common contaminant as it is widely used to treat infections caused by anaerobic microorganisms. Under simulated solar light, Ni-HCF displays substantial photocatalytic activity, degrading 94.3% of MDZ in 6 h. The remarkable performance of Ni-HCF nanocubes is attributeto a higher ability to separate charge carriers and to a lower resistance toward charge transfer, as confirmed by the electrochemical characterization. These achievements highlight the possibility of combining the performance of earth-abundant catalysts with a renewable energy source for environmental remediation, thus meeting the requirements for sustainable development.
RESUMO
Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of CâC and CâH bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.
RESUMO
Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200-1300 °C. Two main phases were formed: rock salt-structured Fm3Ì m and spinel-structured Fd3Ì m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached -112.6 µV/K at room temperature, compared to -150 µV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.
RESUMO
Basic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first-row transition metal-based catalysts present state-of-the-art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first-row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex-SnS2 ) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un-confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm-2 and Tafel slope as low as 93 mV dec-1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low-cost electrocatalysts.
RESUMO
Elastic strains in metallic catalysts induce enhanced selectivity for carbon dioxide reduction (CO2R) toward valuable multicarbon (C2+) products. However, under working conditions, the structure of catalysts inevitably undergoes reconstruction, hardly retaining the initial strain. Herein, we present a metal/metal oxide synthetic strategy to introduce and maintain the tensile strain in a copper/ceria heterostructure, enabled by the presence of a thin interface layer of Cu2O/CeO2. The tensile strain in the copper domain and deficient electron environment around interfacial Cu sites resulted in strengthened adsorption of carbonaceous intermediates and promoted *CO dimerization. The strain effect in the copper/ceria heterostructure leads to an improved C2+ selectivity with a maximum Faradaic efficiency of 76.4% and a half-cell power conversion efficiency of 49.1%. The fundamental insights gained from this system can facilitate the rational design of heterostructure catalysts for CO2R.
RESUMO
The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m-2 h-1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
RESUMO
Recently, the nanostructured nickel-cobalt bimetallic oxide (NiCo2O4) material with high electrochemical activity has received intensive attention. Beside this, the biomass assisted synthesis of NiCo2O4 is gaining popularity due to its advantageous features such as being low cost, simplicity, minimal use of toxic chemicals, and environment-friendly and ecofriendly nature. The electrochemical activity of spinel NiCo2O4 is associated with its mixed metal oxidation states. Therefore, much attention has been paid to the crystal quality, morphology and tunable surface chemistry of NiCo2O4 nanostructures. In this study, we have used citrus lemon juice consisting of a variety of chemical compounds having the properties of a stabilizing agent, capping agent and chelating agent. Moreover, the presence of several acidic chemical compounds in citrus lemon juice changed the pH of the growth solution and consequently we observed surface modified and structural changes that were found to be very effective for the development of energy conversion and energy storage systems. These naturally occurring compounds in citrus lemon juice played a dynamic role in transforming the nanorod morphology of NiCo2O4 into small and well-packed nanoparticles. Hence, the prepared NiCo2O4 nanostructures exhibited a new surface-oriented nanoparticle morphology, high concentration of defects on the surface (especially oxygen vacancies), sufficient ionic diffusion and reaction of electrolytic ions, enhanced electrical conductivity, and favorable reaction kinetics at the interface. The electrocatalytic properties of the NiCo2O4 nanostructures were studied in oxygen evolution reaction (OER) at a low overpotential of 250 mV for 10 mA cm-2, Tafel slope of 98 mV dec-1, and durability of 40 h. Moreover, an asymmetric supercapacitor was produced and the obtained results indicated a high specific capacitance of (Cs) of 1519.19 F g-1, and energy density of 33.08 W h kg-1 at 0.8 A g-1. The enhanced electrochemical performance could be attributed to the favorable structural changes, surface modification, and surface crystal facet exposure due to the use of citrus lemon juice. The proposed method of transformation of nanorod to nanoparticles could be used for the design of a new generation of efficient electrocatalyst materials for energy storage and conversion uses.
RESUMO
Synthesis of Nb-containing titania nanotubular arrays at room temperature by electrochemical anodization is reported. Crystallization of pure and Nb-doped TiO(2) nanotubes was carried out by post-growth annealing at 400°C. The morphology of the tubes obtained was characterized by scanning electron microscopy (SEM). Crystal structure and composition of tubes were investigated by glancing incidence x-ray diffraction (GIXRD) and total reflection x-ray fluorescence (TXRF). For the first time gas sensing characteristics of Nb-doped TiO(2) nanotubes were investigated and compared to those of undoped nanotubes. The functional properties of nanotubular arrays towards CO, H(2), NO(2), ethanol and acetone were tested in a wide range of operating temperature. The introduction of Nb largely improves conductivity and enhances gas sensing performances of TiO(2) nanotubes.
Assuntos
Gases/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nióbio/química , Titânio/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da PartículaRESUMO
The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.