Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(8): e1009787, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339468

RESUMO

The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.


Assuntos
Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Células Epiteliais/imunologia , Inflamação/imunologia , Intestinos/imunologia , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Infecções por Campylobacter/metabolismo , Infecções por Campylobacter/microbiologia , Citocinas , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Imunidade Inata/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Intestinos/microbiologia , NF-kappa B/genética , Proteínas Quinases/genética , Transdução de Sinais , Virulência , Fatores de Virulência/metabolismo
2.
Mol Syst Biol ; 17(2): e10188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33590968

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a system-wide scale so that potential host-directed therapies can be developed. In situ proteome-wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in protein activity. Here we adapted TPP to high biosafety conditions amenable to SARS-CoV-2 handling. We discovered pronounced temporal alterations in host protein thermostability during infection, which converged on cellular processes including cell cycle, microtubule and RNA splicing regulation. Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during infection suppressed SARS-CoV-2 replication. Overall, this work serves as a framework for expanding TPP workflows to globally important human pathogens that require high biosafety containment and provides deeper resolution into the molecular changes induced by SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Estabilidade Proteica , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Antivirais/farmacologia , COVID-19/virologia , Humanos , Proteoma , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Temperatura , Replicação Viral/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 115(14): E3221-E3229, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555749

RESUMO

Toll-like receptor 5 (TLR5) of mammals, birds, and reptiles detects bacterial flagellin and signals as a homodimeric complex. Structural studies using truncated TLR5b of zebrafish confirm the homodimeric TLR5-flagellin interaction. Here we provide evidence that zebrafish (Danio rerio) TLR5 unexpectedly signals as a heterodimer composed of the duplicated gene products drTLR5b and drTLR5a. Flagellin-induced signaling by the zebrafish TLR5 heterodimer increased in the presence of the TLR trafficking chaperone UNC93B1. Targeted exchange of drTLR5b and drTLR5a regions revealed that TLR5 activation needs a heterodimeric configuration of the receptor ectodomain and cytoplasmic domain, consistent with ligand-induced changes in receptor conformation. Structure-guided substitution of the presumed principal flagellin-binding site in human TLR5 with corresponding zebrafish TLR5 residues abrogated human TLR5 activation, indicating a species-specific TLR5-flagellin interaction. Our findings indicate that the duplicated TLR5 of zebrafish underwent subfunctionalization through concerted coevolution to form a unique heterodimeric flagellin receptor that operates fundamentally differently from TLR5 of other species.


Assuntos
Flagelina/metabolismo , Duplicação Gênica , Receptor 5 Toll-Like/química , Receptor 5 Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dimerização , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Homologia de Sequência , Transdução de Sinais , Receptor 5 Toll-Like/genética , Peixe-Zebra
4.
Fish Shellfish Immunol ; 56: 70-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27368535

RESUMO

Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs.


Assuntos
Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Imunidade Inata , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/genética , Sequência de Aminoácidos , Animais , Carpas/classificação , Carpas/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Filogenia , Alinhamento de Sequência , Sintenia , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/imunologia
5.
Front Immunol ; 9: 2626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483270

RESUMO

Toll-like receptors (TLRs) form an ancient family of innate immune receptors that detect microbial structures and activate the host immune response. Most subfamilies of TLRs (including TLR3, TLR5, and TLR7) are highly conserved among vertebrate species. In contrast, TLR15, a member of the TLR1 subfamily, appears to be unique to birds and reptiles. We investigated the functional evolution of TLR15. Phylogenetic and synteny analyses revealed putative TLR15 orthologs in bird species, several reptilian species and also in a shark species, pointing to an unprecedented date of origin of TLR15 as well as large scale reciprocal loss of this TLR in most other vertebrates. Cloning and functional analysis of TLR15 of the green anole lizard (Anolis carolinensis), salt water crocodile (Crocodylus porosus), American alligator (Alligator mississippiensis), and chicken (Gallus gallus) showed for all species TLR15 specific protease-induced activation of NF-κB, despite highly variable TLR15 protein expression levels. The variable TLR15 expression was consistent in both human and reptilian cells and could be attributed to species-specific differences in TLR15 codon usage. The species-specific codon bias was not or barely noted for more evolutionarily conserved TLRs (e.g., TLR3). Overall, our results indicate that TLR15 originates before the divergence of chondrichthyes fish and tetrapods and that TLR15 of both avian and reptilian species has a conserved function as protease activated receptor. The species-specific codon usage and large scale loss of TLR15 in most vertebrates suggest evolutionary regression of this ancient TLR.


Assuntos
Códon/genética , Receptores Toll-Like/genética , Jacarés e Crocodilos/genética , Animais , Evolução Biológica , Linhagem Celular , Galinhas/genética , Células HEK293 , Humanos , Lagartos/genética , NF-kappa B/genética , Filogenia , Serpentes/genética , Especificidade da Espécie
6.
Sci Rep ; 6: 19046, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738735

RESUMO

Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.


Assuntos
Adaptação Biológica , Evolução Biológica , Flagelina/metabolismo , Interações Hospedeiro-Patógeno , Répteis/microbiologia , Répteis/fisiologia , Receptor 5 Toll-Like/metabolismo , Animais , Flagelina/química , Expressão Gênica , Humanos , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas , Receptor 5 Toll-Like/química , Receptor 5 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA