Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727862

RESUMO

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Assuntos
Haplótipos , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fotoperíodo , Genes de Plantas , Marcadores Genéticos
2.
Theor Appl Genet ; 136(11): 223, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838631

RESUMO

In woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V. riparia, and V. berlandieri). In this study, we used a wild population of an American Vitis species (V. berlandieri) to analyze the genetic architecture of the root-related traits of rootstocks in a grafted context. We studied a population consisting of 211 genotypes, with one to five replicates each (n = 846 individuals), plus four commercial rootstocks as control genotypes (110R, 5BB, Börner, and SO4). After two independent years of experimentation, the best linear unbiased estimates method revealed root-related traits with a moderate-to-high heritability (0.36-0.82) and coefficient of genetic variation (0.15-0.45). A genome-wide association study was performed with the BLINK model, leading to the detection of 11 QTL associated with four root-related traits (one QTL was associated with the total number of roots, four were associated with the number of small roots (< 1 mm in diameter), two were associated with the number of medium-sized roots (1 mm < diameter < 2 mm), and four were associated with mean diameter) accounting for up to 25.1% of the variance. Three genotypes were found to have better root-related trait performances than the commercial rootstocks and therefore constitute possible new candidates for use in grapevine rootstock breeding programs.


Assuntos
Vitis , Humanos , Vitis/genética , Estudo de Associação Genômica Ampla , Raízes de Plantas/genética , Melhoramento Vegetal , Fenótipo
3.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113190

RESUMO

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
4.
BMC Genomics ; 22(1): 773, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715779

RESUMO

BACKGROUND: High-density SNP arrays are now available for a wide range of crop species. Despite the development of many tools for generating genetic maps, the genome position of many SNPs from these arrays is unknown. Here we propose a linkage disequilibrium (LD)-based algorithm to allocate unassigned SNPs to chromosome regions from sparse genetic maps. This algorithm was tested on sugarcane, wheat, and barley data sets. We calculated the algorithm's efficiency by masking SNPs with known locations, then assigning their position to the map with the algorithm, and finally comparing the assigned and true positions. RESULTS: In the 20-fold cross-validation, the mean proportion of masked mapped SNPs that were placed by the algorithm to a chromosome was 89.53, 94.25, and 97.23% for sugarcane, wheat, and barley, respectively. Of the markers that were placed in the genome, 98.73, 96.45 and 98.53% of the SNPs were positioned on the correct chromosome. The mean correlations between known and new estimated SNP positions were 0.97, 0.98, and 0.97 for sugarcane, wheat, and barley. The LD-based algorithm was used to assign 5920 out of 21,251 unpositioned markers to the current Q208 sugarcane genetic map, representing the highest density genetic map for this species to date. CONCLUSIONS: Our LD-based approach can be used to accurately assign unpositioned SNPs to existing genetic maps, improving genome-wide association studies and genomic prediction in crop species with fragmented and incomplete genome assemblies. This approach will facilitate genomic-assisted breeding for many orphan crops that lack genetic and genomic resources.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Ligação Genética , Genótipo , Desequilíbrio de Ligação , Melhoramento Vegetal
5.
Theor Appl Genet ; 134(6): 1625-1644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738512

RESUMO

KEY MESSAGE: Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is "How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?" Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype-Management (G-M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G-M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G-M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G-M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


Assuntos
Agricultura/métodos , Produtos Agrícolas/genética , Interação Gene-Ambiente , Melhoramento Vegetal , Mudança Climática , Fazendas , Genótipo
6.
Theor Appl Genet ; 134(5): 1493-1511, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33587151

RESUMO

KEY MESSAGE: Simulations highlight the potential of genomic selection to substantially increase genetic gain for complex traits in sugarcane. The success rate depends on the trait genetic architecture and the implementation strategy. Genomic selection (GS) has the potential to increase the rate of genetic gain in sugarcane beyond the levels achieved by conventional phenotypic selection (PS). To assess different implementation strategies, we simulated two different GS-based breeding strategies and compared genetic gain and genetic variance over five breeding cycles to standard PS. GS scheme 1 followed similar routines like conventional PS but included three rapid recurrent genomic selection (RRGS) steps. GS scheme 2 also included three RRGS steps but did not include a progeny assessment stage and therefore differed more fundamentally from PS. Under an additive trait model, both simulated GS schemes achieved annual genetic gains of 2.6-2.7% which were 1.9 times higher compared to standard phenotypic selection (1.4%). For a complex non-additive trait model, the expected annual rates of genetic gain were lower for all breeding schemes; however, the rates for the GS schemes (1.5-1.6%) were still greater than PS (1.1%). Investigating cost-benefit ratios with regard to numbers of genotyped clones showed that substantial benefits could be achieved when only 1500 clones were genotyped per 10-year breeding cycle for the additive genetic model. Our results show that under a complex non-additive genetic model, the success rate of GS depends on the implementation strategy, the number of genotyped clones and the stage of the breeding program, likely reflecting how changes in QTL allele frequencies change additive genetic variance and therefore the efficiency of selection. These results are encouraging and motivate further work to facilitate the adoption of GS in sugarcane breeding.


Assuntos
Genoma de Planta , Genômica/métodos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Saccharum/genética , Seleção Genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genética Populacional , Modelos Genéticos , Fenótipo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
7.
Theor Appl Genet ; 134(9): 2823-2839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34061222

RESUMO

KEY MESSAGE: QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicides.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
8.
Theor Appl Genet ; 134(7): 2235-2252, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903985

RESUMO

KEY MESSAGE: Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.


Assuntos
Genômica , Modelos Genéticos , Saccharum/genética , Variação Genética , Genótipo , Fenótipo , Melhoramento Vegetal
9.
Theor Appl Genet ; 134(5): 1455-1462, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33590303

RESUMO

KEY MESSAGE: Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Herança Multifatorial , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Saccharum/genética , Mapeamento Cromossômico/métodos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genética Populacional , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
10.
Theor Appl Genet ; 134(6): 1645-1662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33900415

RESUMO

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.


Assuntos
Mudança Climática , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Triticum/genética , Produtos Agrícolas/genética , Genes de Plantas , Fenótipo , Raízes de Plantas/genética , Triticum/fisiologia
11.
Theor Appl Genet ; 134(5): 1545-1555, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677638

RESUMO

KEY MESSAGE: Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
12.
BMC Genomics ; 21(1): 320, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32326904

RESUMO

BACKGROUND: Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. RESULTS: We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. CONCLUSIONS: Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Ácido Oleico/metabolismo , Brassica napus/classificação , Brassica napus/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Ligação Genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos
13.
BMC Biol ; 17(1): 18, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30803435

RESUMO

Farmers around the world have recently experienced significant crop losses due to severe heat and drought. Such extreme weather events and the need to feed a rapidly growing population have raised concerns for global food security. While plant breeding has been very successful and has delivered today's highly productive crop varieties, the rate of genetic improvement must double to meet the projected future demands. Here we discuss basic principles and features of crop breeding and how modern technologies could efficiently be explored to boost crop improvement in the face of increasingly challenging production conditions.


Assuntos
Agricultura/métodos , Produtos Agrícolas , Abastecimento de Alimentos , Melhoramento Vegetal
14.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722187

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha-1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha-1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Desidratação/genética , Desidratação/metabolismo , Estudo de Associação Genômica Ampla , Triticum/genética , Triticum/crescimento & desenvolvimento
15.
Theor Appl Genet ; 132(1): 149-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30327845

RESUMO

KEY MESSAGE: GWAS detected 11 yellow spot resistance QTL in the Vavilov wheat collection. Promising adult-plant resistance loci could provide a sustainable genetic solution to yellow spot in modern wheat varieties. Yellow spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is the most economically damaging foliar disease of wheat in Australia. Genetic resistance is considered to be the most sustainable means for disease management, yet the genomic regions underpinning resistance to Ptr, particularly adult-plant resistance (APR), remain vastly unknown. In this study, we report results of a genome-wide association study using 295 accessions from the Vavilov wheat collection which were extensively tested for response to Ptr infections in glasshouse and field trials at both seedling an adult growth stages. Combining phenotypic datasets from multiple experiments in Australia and Russia with 25,286 genome-wide, high-quality DArTseq markers, we detected a total of 11 QTL, of which 5 were associated with seedling resistance, 3 with all-stage resistance, and 3 with APR. Interestingly, the novel APR QTL were effective even in the presence of host sensitivity gene Tsn1. These genomic regions could offer broad-spectrum yellow spot protection, not just to ToxA but also other pathogenicity or virulence factors. Vavilov wheat accessions carrying APR QTL combinations displayed enhanced levels of resistance highlighting the potential for QTL stacking through breeding. We propose that the APR genetic factors discovered in our study could be used to improve resistance levels in modern wheat varieties and contribute to the sustainable control of yellow spot.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Austrália , Estudos de Associação Genética , Genótipo , Haplótipos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Federação Russa , Triticum/microbiologia
16.
Theor Appl Genet ; 132(9): 2707-2719, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254025

RESUMO

KEY MESSAGE: Exploring large genomic data sets based on the latest reference genome assembly identifies the rice ortholog APO1 as a key candidate gene for number of rachis nodes per spike in wheat. Increasing grain yield in wheat is a key breeding objective worldwide. Several component traits contribute to grain yield with spike attributes being among the most important. In this study, we performed a genome-wide association analysis for 12 grain yield and component traits measured in field trials with contrasting agrochemical input levels in a panel of 220 hexaploid winter wheats. A highly significant, environmentally consistent QTL was detected for number of rachis nodes per rachis (NRN) on chromosome 7AL. The five most significant SNPs formed a strong linkage disequilibrium (LD) block and tagged a 2.23 Mb region. Using pairwise LD for exome SNPs located across this interval in a large worldwide hexaploid wheat collection, we reduced the genomic region for NRN to a 258 Kb interval containing four of the original SNP and six high-confidence genes. The ortholog of one (TraesCS7A01G481600) of these genes in rice was ABBERANT PANICLE ORGANIZATION1 (APO1), which is known to have significant effects on panicle attributes. The APO1 ortholog was the best candidate for NRN and was associated with a 115 bp promoter deletion and two amino acid (C47F and D384 N) changes. Using a large worldwide collection of tetraploid and hexaploid wheat, we found 12 haplotypes for the NRN QTL and evidence for positive enrichment of two haplotypes in modern germplasm. Comparison of five QTL haplotypes in Australian yield trials revealed their relative, context-dependent contribution to grain yield. Our study provides diagnostic SNPs and value propositions to support deployment of the NRN trait in wheat breeding.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Ligação Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Desequilíbrio de Ligação , Desenvolvimento Vegetal , Polimorfismo de Nucleotídeo Único
17.
Theor Appl Genet ; 131(2): 299-317, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080901

RESUMO

KEY MESSAGE: Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.


Assuntos
Brassica napus/genética , Vigor Híbrido , Modelos Genéticos , Melhoramento Vegetal , Cruzamentos Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
Theor Appl Genet ; 131(1): 127-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980023

RESUMO

KEY MESSAGE: Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Austrália , Basidiomycota , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
19.
Plant Cell Environ ; 40(5): 717-725, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28036107

RESUMO

Roots, the hidden half of crop plants, are essential for resource acquisition. However, knowledge about the genetic control of below-ground plant development in wheat, one of the most important small-grain crops in the world, is very limited. The molecular interactions connecting root and shoot development and growth, and thus modulating the plant's demand for water and nutrients along with its ability to access them, are largely unexplored. Here, we demonstrate that linkage drag in European bread wheat, driven by strong selection for a haplotype variant controlling heading date, has eliminated a specific combination of two flanking, highly conserved haplotype variants whose interaction confers increased root biomass. Reversing this inadvertent consequence of selection could recover root diversity that may prove essential for future food production in fluctuating environments. Highly conserved synteny to rice across this chromosome segment suggests that adaptive selection has shaped the diversity landscape of this locus across different, globally important cereal crops. By mining wheat gene expression data, we identified root-expressed genes within the region of interest that could help breeders to select positive variants adapted to specific target soil environments.


Assuntos
Ligação Genética , Raízes de Plantas/genética , Triticum/genética , Biomassa , Cromossomos de Plantas/genética , Ecossistema , Epistasia Genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Haplótipos/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Plântula/genética
20.
Plant Genome ; 17(2): e20467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816340

RESUMO

Loss of genetic diversity in elite crop breeding pools can severely limit long-term genetic gains and limit ability to make gains in new traits, like heat tolerance, that are becoming important as the climate changes. Here, we investigate and propose potential breeding program applications of optimal haplotype stacking (OHS), a selection method that retains useful diversity in the population. OHS selects sets of candidates containing, between them, haplotype segments with very high segment breeding values for the target trait. We compared the performance of OHS, a similar method called optimal population value (OPV), truncation selection on genomic estimated breeding values (GEBVs), and optimal contribution selection (OCS) in stochastic simulations of recurrent selection on founder wheat genotypes. After 100 generations of intercrossing and selection, OCS and truncation selection had exhausted the genetic diversity, while considerable diversity remained in the OHS population. Gain under OHS in these simulations ultimately exceeded that from truncation selection or OCS. OHS achieved faster gains when the population size was small, with many progeny per cross. A promising hybrid strategy, involving a single cycle of OHS in the first generation followed by recurrent truncation selection, substantially improved long-term gain compared with truncation selection and performed similarly to OCS. The results of this study provide initial insights into where OHS could be incorporated into breeding programs.


Assuntos
Variação Genética , Melhoramento Vegetal , Triticum , Triticum/genética , Haplótipos , Seleção Genética , Simulação por Computador , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA