Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(2): 426-435, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31858786

RESUMO

The transcription factor Nrf2a induces a cellular antioxidant response and provides protection against chemical-induced oxidative stress, as well as playing a critical role in development and disease. Zebrafish are a powerful model to study the role of Nrf2a in these processes but have been limited by reliance on transient gene knockdown techniques or mutants with only partial functional alteration. We developed several lines of zebrafish carrying different null (loss of function, LOF) or hyperactive (gain of function, GOF) mutations to facilitate our understanding of the Nrf2a pathway in protecting against oxidative stress. The mutants confirmed Nrf2a dependence for induction of the antioxidant genes gclc, gstp, prdx1, and gpx1a and identified a role for Nrf2a in the baseline expression of these genes, as well as for sod1. Specifically, the 4-fold induction of gstp by tert-butyl hydroperoxide (tBHP) in wild type fish was abolished in LOF mutants. In addition, baseline gstp expression in GOF mutants increased by 12.6-fold and in LOF mutants was 0.8-fold relative to wild type. Nrf2a LOF mutants showed increased sensitivity to the acute toxicity of cumene hydroperoxide (CHP) and tBHP throughout the first 4 days of development. Conversely, GOF mutants were less sensitive to CHP toxicity during the first 4 days of development and were protected against the toxicity of both hydroperoxides after 4 dpf. Neither gain nor loss of Nrf2a modulated the toxicity of R-(-)-carvone (CAR), despite the ability of this compound to potently induce Nrf2a-dependent antioxidant genes. Similar to other species, GOF zebrafish mutants exhibited significant growth and survival defects. In summary, these new genetic tools can be used to facilitate the identification of downstream gene targets of Nrf2a, better define the role of Nrf2a in the toxicity of environmental chemicals, and further the study of diseases involving altered Nrf2a function.


Assuntos
Derivados de Benzeno/toxicidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Mutação com Ganho de Função , Mutação com Perda de Função , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , terc-Butil Hidroperóxido/toxicidade , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Relação Dose-Resposta a Droga , Mutação com Ganho de Função/efeitos dos fármacos , Mutação com Perda de Função/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Chem Res Toxicol ; 30(4): 893-904, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-27750016

RESUMO

Sustainable molecular design of less hazardous chemicals presents a potentially transformative approach to protect public health and the environment. Relationships between molecular descriptors and toxicity thresholds previously identified the octanol-water distribution coefficient, log D, and the HOMO-LUMO energy gap, ΔE, as two useful properties in the identification of reduced aquatic toxicity. To determine whether these two property-based guidelines are applicable to sublethal oxidative stress (OS) responses, two common aquatic in vivo models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), were employed to examine traditional biochemical biomarkers (lipid peroxidation, DNA damage, and total glutathione) and antioxidant gene activation following exposure to eight structurally diverse industrial chemicals (bisphenol A, cumene hydroperoxide, dinoseb, hydroquinone, indene, perfluorooctanoic acid, R-(-)-carvone, and tert-butyl hydroperoxide). Bisphenol A, cumene hydroperoxide, dinoseb, and hydroquinone were consistent inducers of OS. Glutathione was the most consistently affected biomarker, suggesting its utility as a sensitivity response to support the design of less hazardous chemicals. Antioxidant gene expression (changes in nrf2, gclc, gst, and sod) was most significantly (p < 0.05) altered by R-(-)-carvone, cumene hydroperoxide, and bisphenol A. Results from the present study indicate that metabolism of parent chemicals and the role of their metabolites in molecular initiating events should be considered during the design of less hazardous chemicals. Current empirical and computational findings identify the need for future derivation of sustainable molecular design guidelines for electrophilic reactive chemicals (e.g., SN2 nucleophilic substitution and Michael addition reactivity) to reduce OS related adverse outcomes in vivo.


Assuntos
Substâncias Perigosas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Cyprinidae/metabolismo , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Substâncias Perigosas/química , Substâncias Perigosas/metabolismo , Modelos Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Teoria Quântica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peixe-Zebra/metabolismo
5.
Chem Commun (Camb) ; 56(19): 2956, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32096808

RESUMO

Correction for 'Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions' by Jacob M. Heltzel et al., Chem. Commun., 2018, 54, 6184-6187.

6.
Chem Commun (Camb) ; 54(48): 6184-6187, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29845981

RESUMO

The transfer hydrogenation of CO2 from glycerol to afford formic and lactic acid is a highly attractive path to valorizing two waste streams and is a significantly more thermodynamically favorable process than direct CO2 hydrogenation. We report the first homogeneous catalyst for this transformation consisting of a water-soluble Ru N-heterocyclic carbene complex. The catalyst affords lactic and formic acid selectively in the presence of a base at temperatures between 150 and 225 °C. Carbonate salts can also be utilized in place of CO2, affording the same products at higher rates.

9.
Environ Toxicol Chem ; 33(8): 1894-902, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24839109

RESUMO

Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Indústrias , Modelos Estatísticos , Medição de Risco/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Octanóis/química , Probabilidade , Estados Unidos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA