RESUMO
The structural and magnetic properties of Co(1-x)Zn(x)Fe2O4 ferrites (Co-Zn ferrites) are investigated in a narrow compositional range around x = 0.6, which is of interest because of applications in magnetic fluid hyperthermia. The study by x-ray and neutron diffraction, Mössbauer spectroscopy and magnetization measurements is done on nanoparticles prepared by the coprecipitation method and bulk samples sintered at high temperatures. In spite of the known preference of Zn2+ for tetrahedral (A) sites and Co2+ for octahedral [B] sites, the cations are distributed nearly evenly over the two sites of spinel structure and there is also a variable number of [B] site vacancies (see text), making cobalt ions trivalent. In particular for x = 0.6, the cationic distribution is refined to [Formula: see text] and [Formula: see text] for the 13 nm particles (T(C) = 335 K) and bulk sample (T(C) = 351 K), respectively.
Assuntos
Cátions/análise , Cobalto/química , Compostos Férricos/química , Nanopartículas/química , Zinco/química , Hipertermia Induzida , Magnetismo , Nanopartículas/ultraestrutura , Espectroscopia de MossbauerRESUMO
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed.