Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 19(35): e2301981, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186376

RESUMO

Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.


Assuntos
Materiais Biocompatíveis , Poliésteres , Materiais Biocompatíveis/química , Poliésteres/química , Temperatura , Cristalização
2.
Mar Drugs ; 21(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976226

RESUMO

Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent "role" in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical "tools" for biomedical applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Alginatos , Compostos Férricos , Alicerces Teciduais , Polímeros
3.
J Nanobiotechnology ; 17(1): 21, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709404

RESUMO

BACKGROUND: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties. RESULTS: Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus). CONCLUSIONS: Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.


Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Bactérias/efeitos dos fármacos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/normas , Ouro/química , Ouro/toxicidade , Indicadores e Reagentes , Cinética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanomedicina , Nanoestruturas/toxicidade , Oxazinas , Razão Sinal-Ruído , Ressonância de Plasmônio de Superfície , Xantenos
4.
Small ; 14(26): e1800205, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29782697

RESUMO

Magnesium oxide (MgO) is recognised as exhibiting a contact-based antibacterial activity. However, a comprehensive study of the impact of atomic-scale surface features on MgO's antibacterial activity is lacking. In this study, the nature and abundance of the native surface defects on different MgO powders are thoroughly investigated. Their impacts on the hydrolysis kinetics, antibacterial activity against Escherichia coli (ATCC 47076), Staphylococcus epidermidis and Pseudomonas aeruginosa and the reactive oxygen species (ROS) generation potential are determined and explained. It is shown that a reduction in the abundance of low-coordinated oxygen atoms on the surface of the MgO improves its resistance to both hydrolysis and antibacterial activity. The ROS generation potential, determined in-situ using a fluorescence microplate assay and electron paramagnetic resonance spectroscopy, is not an inherent property of the studied MgO, rather it is a side product of hydrolysis (only for the most highly defected MgO particles) and/or a consequence of the MgO/bacteria interaction. The evaluation of the mutual correlations of the hydrolysis, the antibacterial activity and the ROS generation, with their origin in the surface defects' peculiarities, led to the conclusion that the acid/base reaction between the MgO surface and the bacterial wall contributes considerably to the MgO's antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Óxido de Magnésio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Varredura Diferencial de Calorimetria , Escherichia coli/efeitos dos fármacos , Hidrólise , Cinética , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Pós , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Termogravimetria , Difração de Raios X
5.
J Mater Sci Mater Med ; 27(11): 170, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27704374

RESUMO

Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm. In direct comparison, such nanocomposite with gallium nanoparticles exhibited better antibacterial properties against Pseudomonas aeruginosa and lower in-vitro cytotoxicity for human lung fibroblasts IMR-90 and mouse fibroblasts L929 (efficient antibacterial action and low toxicity from 0.1 to 1 g/L) than the nanocomposite of hydroxyapatite and silver nanoparticles (efficient antibacterial action and low toxicity from 0.2 to 0.25 g/L). This is the first report of a biomaterial composite with gallium nanoparticles. The observed strong antibacterial properties and low cytotoxicity make the investigated material promising for the prevention of implantation-induced infections that are frequently caused by P. aeruginosa.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Gálio/química , Hidroxiapatitas/química , Nanocompostos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/química , Linhagem Celular , Durapatita/química , Humanos , Íons , Nanopartículas Metálicas/química , Metais/química , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanosferas , Óxidos/química , Prata/química , Difração de Raios X
6.
Pharmaceutics ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399282

RESUMO

In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.

7.
Pharmaceutics ; 16(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543266

RESUMO

This study proposes synthesis and evaluation of gelatin-/alginate-based hydrogel scaffolds reinforced with titanium dioxide (TiO2) nanoparticles which, through their combination with allantoin, quercetin, and caffeic acid, provide multi-target therapy directed on all phases of the wound healing process. These scaffolds provide the simultaneous release of bioactive agents and concurrently support cell/tissue repair through the replicated structure of a native extracellular matrix. The hydrogel scaffolds were synthesized via a crosslinking reaction using EDC as a crosslinker for gelatin. Synthesized hydrogel scaffolds and the effect of TiO2 on their properties were characterized by structural, mechanical, morphological, and swelling properties, and the porosity, wettability, adhesion to skin tissue, and simultaneous release features. The biocompatibility of the scaffolds was tested in vitro on fibroblasts (MRC5 cells) and in vivo (Caenorhabditis elegans) in a survival probe. The scaffolds revealed porous interconnected morphology, porosity of 88.33 to 96.76%, elastic modulus of 1.53 to 4.29 MPa, full hydrophilicity, favorable skin adhesivity, and biocompatibility. The simultaneous release was investigated in vitro indicating dependence on the scaffold's composition and type of bioactive agents. The novel scaffolds designed as multi-target therapy have significant promise for improved wound healing in a beneficial and non-invasive manner.

8.
Int J Biol Macromol ; 266(Pt 2): 131329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574906

RESUMO

The bacterial nanocellulose (BnC) membranes were produced extracellularly by a novel aerobic acetic acid bacterium Komagataeibacter melomenusus. The BnC was modified in situ by adding carboxymethyl cellulose (CMC) into the culture media, obtaining a BnC-CMC product with denser fibril arrangement, improved rehydration ratio and elasticity in comparison to BnC. The proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N) were immobilized to BnC matrix by ex situ covalent binding and/or adsorption. The optimal Br immobilization conditions towards the maximized specific proteolytic activity were investigated by response surface methodology as factor variables. At optimal conditions, i.e., 8.8 mg/mL CMC and 10 mg/mL Br, hyperactivation of the enzyme was achieved, leading to the specific proteolytic activity of 2.3 U/mg and immobilization efficiency of 39.1 %. The antimicrobial activity was observed against Gram-positive bacteria (S. epidermidis, S. aureus and E. faecalis) for membranes with immobilized N and was superior when in situ modified BnC membranes were used. N immobilized on the BnC or BnC-CMC membranes was cytocompatible and did not cause changes in normal human dermal fibroblast cell morphology. BnC membranes perform as an efficient carrier for Br or N immobilization, holding promise in wound debridement and providing antimicrobial action against Gram-positive bacteria, respectively.


Assuntos
Acetobacteraceae , Bromelaínas , Celulose , Nisina , Nisina/farmacologia , Nisina/química , Bromelaínas/química , Bromelaínas/farmacologia , Celulose/química , Celulose/farmacologia , Acetobacteraceae/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Nanoestruturas/química , Testes de Sensibilidade Microbiana
9.
Polymers (Basel) ; 15(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050256

RESUMO

The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33-65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.

10.
ACS Appl Bio Mater ; 6(12): 5481-5492, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38062750

RESUMO

Cardiovascular diseases are a pre-eminent global cause of mortality in the modern world. Typically, surgical intervention with implantable medical devices such as cardiovascular stents is deployed to reinstate unobstructed blood flow. Unfortunately, existing stent materials frequently induce restenosis and thrombosis, necessitating the development of superior biomaterials. These biomaterials should inhibit platelet adhesion (mitigating stent-induced thrombosis) and smooth muscle cell proliferation (minimizing restenosis) while enhancing endothelial cell proliferation at the same time. To optimize the surface properties of Ti6Al4V medical implants, we investigated two surface treatment procedures: gaseous plasma treatment and hydrothermal treatment. We analyzed these modified surfaces through scanning electron microscopy (SEM), water contact angle analysis (WCA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Additionally, we assessed in vitro biological responses, including platelet adhesion and activation, as well as endothelial and smooth muscle cell proliferation. Herein, we report the influence of pre/post oxygen plasma treatment on titanium oxide layer formation via a hydrothermal technique. Our results indicate that alterations in the titanium oxide layer and surface nanotopography significantly influence cell interactions. This work offers promising insights into designing multifunctional biomaterial surfaces that selectively promote specific cell types' proliferation─which is a crucial advancement in next-generation vascular implants.


Assuntos
Materiais Biocompatíveis , Trombose , Humanos , Adesão Celular , Propriedades de Superfície
11.
Mater Horiz ; 10(7): 2627-2637, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185815

RESUMO

Magnetoelectricity enables a solid-state material to generate electricity under magnetic fields. Most magnetoelectric composites are developed through a strain-mediated route by coupling piezoelectric and magnetostrictive phases. However, the limited availability of high-performance magnetostrictive components has become a constraint for the development of novel magnetoelectric materials. Here, we demonstrate that nanostructured composites of magnetic and pyroelectric materials can generate electrical output, a phenomenon we refer to as the magnetopyroelectric (MPE) effect, which is analogous to the magnetoelectric effect in strain-mediated composite multiferroics. Our composite consists of magnetic iron oxide nanoparticles (IONPs) dispersed in a ferroelectric (and also pyroelectric) poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. Under a high-frequency low-magnitude alternating magnetic field, the IONPs generate heat through hysteresis loss, which stimulates the depolarization process of the pyroelectric polymer. This magnetopyroelectric approach creates a new opportunity to develop magnetoelectric materials for a wide range of applications.

12.
Biomater Sci ; 10(17): 4933-4948, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861487

RESUMO

Cell stimulation using piezoelectric polymers, which is known as piezostimulation, is an innovative approach for designing antimicrobial protection. As an antibiotic-free and inorganic nanoparticle-free approach, it uses physical stimuli to target bacterial cells in a non-specific manner, which may be of great importance, particularly in the context of avoiding resistant bacterial strains. In this study, we prepared fully organic piezoelectric biodegradable films composed of poly-L-lactide (PLLA) and demonstrated their antimicrobial effect on S. epidermidis as a model of Gram-positive and E. coli as a model of Gram-negative bacteria. The PLLA films were either smooth and fabricated using simple melt- drawing or nanotextured, as self-standing nanotubes formed using the template-assisted method. The morphological differences between nanotextured and smooth films resulted in a larger surface area and better surface contact in nanotextured films, together with improved structural properties and better crystallinity, which were the main reasons for their better piezoelectric properties, and consequently stronger bactericidal effect. The comparison between the nanotextured surfaces with and without piezoelectric nature excluded the main role of morphology and directly confirmed piezoelectricity as the main reason for the observed antimicrobial affect. We also confirmed that piezo-stimulation using the antibacterial nanotextured film could damage the bacterial membrane as the main mechanism of action, while the contribution of pH changes and ROS generation was negligible. More importantly, the effect was selective toward the bacterial membrane and the same damage was not observed in human red blood cells, making the therapeutic use of these films possible.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Humanos , Polímeros/química , Polímeros/farmacologia , Staphylococcus epidermidis
13.
Biomater Adv ; 140: 213051, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914326

RESUMO

Functional calcium phosphate biomaterials can be designed as carriers of a balanced mixture of biologically relevant ions able to target critical processes in bone regeneration. They hold the potential to use mechanisms very similar to growth factors naturally produced during fracture healing, while circumventing some of their drawbacks. Here we present a novel phase of carbonated-apatite containing Mg2+, Sr2+, Zn2+ and Ga3+ ions (HApMgSrZnGa). While all dopants decrease the crystallinity, Ga3+ limits crystal growth and enables the formation of a nanosized apatite phase with enhanced specific surface area. Coexistence of the ions enhances degradability and controls solubility of low crystalline, distorted, multi-doped apatite structure, controlled by Ga3+ ions accumulated at the surface. Consequently, HApMgSrZnGa supports the viability of human mesenchymal stromal cells (MSCs) and induces their stimulation along the osteogenic lineage. In addition, the co-released ions has a synergistic antimicrobial effect, particularly within the HApMgSrZnGa-Au(arg) composite with Au(arg) as contact-based antimicrobial. The activity is stable up to two months in vitro. Osteogenic nature and antimicrobial activity, combined in a single biomaterial, are suggesting a well-balanced, multi-doped apatite design applicable as future option in bone regeneration and tissue engineering.


Assuntos
Gálio , Estrôncio , Apatitas , Materiais Biocompatíveis/farmacologia , Humanos , Íons , Magnésio/farmacologia , Estrôncio/farmacologia , Engenharia Tecidual , Zinco/farmacologia
14.
Front Microbiol ; 13: 959156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466653

RESUMO

Chronic wounds infected by Pseudomonas aeruginosa and Staphylococcus aureus are a relevant health problem worldwide because these pathogens grow embedded in a network of polysaccharides, proteins, lipids, and extracellular DNA, named biofilm, that hinders the transport of antibiotics and increases their antimicrobial tolerance. It is necessary to investigate therapies that improve the penetrability and efficacy of antibiotics. In this context, our main objectives were to study the relationship between P. aeruginosa and S. aureus and how their relationship can affect the antimicrobial treatment and investigate whether functionalized silver nanoparticles can improve the antibiotic therapy. We used an optimized in vitro wound model that mimics an in vivo wound to co-culture P. aeruginosa and S. aureus biofilm. The in vitro wound biofilm was treated with antimicrobial combinatory therapies composed of antibiotics (gentamycin and ciprofloxacin) and biofilm-dispersing free or silver nanoparticles functionalized with enzymes (α-amylase, cellulase, DNase I, or proteinase K) to study their antibiofilm efficacy. The interaction and colocalization of P. aeruginosa and S. aureus in a wound-like biofilm were examined and detailed characterized by confocal and electronic microscopy. We demonstrated that antibiotic monotherapy is inefficient as it differentially affects the two bacterial species in the mixed biofilm, driving P. aeruginosa to overcome S. aureus when using ciprofloxacin and the contrary when using gentamicin. In contrast, dual-antibiotic therapy efficiently reduces both species while maintaining a balanced population. In addition, DNase I nanoparticle treatment had a potent antibiofilm effect, decreasing P. aeruginosa and S. aureus viability to 0.017 and 7.7%, respectively, in combined antibiotics. The results showed that using nanoparticles functionalized with DNase I enhanced the antimicrobial treatment, decreasing the bacterial viability more than using the antibiotics alone. The enzymes α-amylase and cellulase showed some antibiofilm effect but were less effective compared to the DNase I treatment. Proteinase K showed insignificant antibiofilm effect. Finally, we proposed a three-dimensional colocalization model consisting of S. aureus aggregates within the biofilm structure, which could be associated with the low efficacy of antibiofilm treatments on bacteria. Thus, designing a clinical treatment that combines antibiofilm enzymes and antibiotics may be essential to eliminating chronic wound infections.

15.
Commun Biol ; 5(1): 1234, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371541

RESUMO

Designing useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (ßCD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (ßCD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release. The components of the complex intensify interactions with bacterial membranes and increase the drug's availability inside bacterial cells, thereby improving its antimicrobial efficacy and safety profile. Multifunctional antibiotics, formulated as drug delivery systems per se, that take the drug to the site of action, maximize its efficacy, and provide optical detectability are envisaged as the future in fighting against infections. Their role as a tool against multiresistant strains remains as interesting challenge open for further research.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Arginina/química , beta-Ciclodextrinas/química , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
16.
Polymers (Basel) ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956626

RESUMO

Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a "pattern" to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold's functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold's structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08-9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.

17.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298041

RESUMO

Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young's modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.

18.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740275

RESUMO

Extracellular vesicles (EVs) are membranous structures in biofluids with enormous diagnostic/prognostic potential for application in liquid biopsies. Any such downstream application requires a detailed characterization of EV concentration, size and morphology. This study aimed to observe the native morphology of EVs in human cerebrospinal fluid after traumatic brain injury. Therefore, they were separated by gravity-driven size-exclusion chromatography (SEC) and investigated by atomic force microscopy (AFM) in liquid and cryogenic transmission electron microscopy (cryo-TEM). The enrichment of EVs in early SEC fractions was confirmed by immunoblot for transmembrane proteins CD9 and CD81. These fractions were then pooled, and the concentration and particle size distribution were determined by Tunable Resistive Pulse Sensing (around 1010 particles/mL, mode 100 nm) and Nanoparticle Tracking Analysis (around 109 particles/mL, mode 150 nm). Liquid AFM and cryo-TEM investigations showed mode sizes of about 60 and 90 nm, respectively, and various morphology features. AFM revealed round, concave, multilobed EV structures; and cryo-TEM identified single, double and multi-membrane EVs. By combining AFM for the surface morphology investigation and cryo-TEM for internal structure differentiation, EV morphological subpopulations in cerebrospinal fluid could be identified. These subpopulations should be further investigated because they could have different biological functions.

19.
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074064

RESUMO

Biocompatible and biodegradable poly-l-lactic acid (PLLA) processed into piezoelectric structures has good potential for use in medical applications, particularly for promoting cellular growth during electrostimulation. Significant advantages like closer contacts between cells and films are predicted when their surfaces are modified to make them more hydrophilic. However, there is an open question about whether the surface modification will affect the degradation process and how the films will be changed as a result. For the first time, we demonstrate that improving the polymer surface's wettability affects the position of enzyme-driven degradation. Although it is generally considered that proteinase K degrades only the polymer surface, we observed the enzyme's ability to induce both surface and bulk degradation. In hydrophilic films, degradation occurs at the surface, inducing surface erosion, while for hydrophobic films, it is located inside the films, inducing bulk erosion. Accordingly, changes in the structural, morphological, mechanical, thermal and wetting properties of the film resulting from degradation vary, depending on the film's wettability. Most importantly, the degradation is gradual, so the mechanical and piezoelectric properties are retained during the degradation.

20.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209326

RESUMO

Nanotextured magnesium oxide (MgO) can exhibit both antibacterial and tissue regeneration activity, which makes it very useful for implant protection. To successfully combine these two properties, MgO needs to be processed within an appropriate carrier system that can keep MgO surface available for interactions with cells, slow down the conversion of MgO to the less active hydroxide and control MgO solubility. Here we present new composites with nanotextured MgO microrods embedded in different biodegradable polymer matrixes: poly-lactide-co-glycolide (PLGA), poly-lactide (PLA) and polycaprolactone (PCL). Relative to their hydrophilicity, polarity and degradability, the matrices were able to affect and control the structural and functional properties of the resulting composites in different manners. We found PLGA matrix the most effective in performing this task. The application of the nanotextured 1D morphology and the appropriate balancing of MgO/PLGA interphase interactions with optimal polymer degradation kinetics resulted in superior bactericidal activity of the composites against either planktonic E. coli or sessile S. epidermidis, S. aureus (multidrug resistant-MRSA) and three clinical strains isolated from implant-associated infections (S. aureus, E. coli and P. aeruginosa), while ensuring controllable release of magnesium ions and showing no harmful effects on red blood cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA