Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(15): 153201, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095600

RESUMO

Permanent electric dipole moments (EDMs) of fundamental particles such as the electron are signatures of parity and time-reversal violation occurring in physics beyond the standard model. EDM measurements probe new physics at energy scales well beyond the reach of present-day colliders. Recent advances in assembling molecules from ultracold atoms have opened up new opportunities for improving the reach of EDM experiments. However, the magnetic field sensitivity of such ultracold molecules means that new measurement techniques are needed before these opportunities can be fully exploited. We present a technique that takes advantage of magnetically insensitive hyperfine clock transitions in polar molecules, offering a way to improve both the precision and accuracy of EDM searches with ultracold assembled molecules.

2.
Phys Chem Chem Phys ; 13(42): 18976-85, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21698321

RESUMO

Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ∼10(15)-10(16) cm(-3) (Reynolds number ∼1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ∼10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.

3.
Rev Sci Instrum ; 89(3): 033109, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604732

RESUMO

We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.

4.
Rev Sci Instrum ; 87(7): 076104, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475611

RESUMO

The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >10(5) V/A, and input current noise <4 pA/Hz, allowing us to obtain shot-noise-limited performance with low optical power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA