Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448060

RESUMO

The aim of this study was to investigate the potential impact of guided imagery (GI) on attentional control and cognitive performance and to explore the relationship between guided imagery, stress reduction, alpha brainwave activity, and attentional control using common cognitive performance tests. Executive function was assessed through the use of attentional control tests, including the anti-saccade, Stroop, and Go/No-go tasks. Participants underwent a guided imagery session while their brainwave activity was measured, followed by attentional control tests. The study's outcomes provide fresh insights into the influence of guided imagery on brain wave activity, particularly in terms of attentional control. The findings suggest that guided imagery has the potential to enhance attentional control by augmenting the alpha power and reducing stress levels. Given the limited existing research on the specific impact of guided imagery on attention control, the study's findings carry notable significance.


Assuntos
Ondas Encefálicas , Imagens, Psicoterapia , Humanos , Atenção , Encéfalo
2.
J Comput Neurosci ; 44(3): 379-391, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752691

RESUMO

It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain aspects of brain functioning.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Temperatura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Animais , Simulação por Computador , Estimulação Elétrica , Humanos , Método de Monte Carlo , Receptores de AMPA/metabolismo
3.
Front Neuroinform ; 17: 1122470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025550

RESUMO

In this study, we explore the simulation setup in computational neuroscience. We use GENESIS, a general purpose simulation engine for sub-cellular components and biochemical reactions, realistic neuron models, large neural networks, and system-level models. GENESIS supports developing and running computer simulations but leaves a gap for setting up today's larger and more complex models. The field of realistic models of brain networks has overgrown the simplicity of earliest models. The challenges include managing the complexity of software dependencies and various models, setting up model parameter values, storing the input parameters alongside the results, and providing execution statistics. Moreover, in the high performance computing (HPC) context, public cloud resources are becoming an alternative to the expensive on-premises clusters. We present Neural Simulation Pipeline (NSP), which facilitates the large-scale computer simulations and their deployment to multiple computing infrastructures using the infrastructure as the code (IaC) containerization approach. The authors demonstrate the effectiveness of NSP in a pattern recognition task programmed with GENESIS, through a custom-built visual system, called RetNet(8 × 5,1) that uses biologically plausible Hodgkin-Huxley spiking neurons. We evaluate the pipeline by performing 54 simulations executed on-premise, at the Hasso Plattner Institute's (HPI) Future Service-Oriented Computing (SOC) Lab, and through the Amazon Web Services (AWS), the biggest public cloud service provider in the world. We report on the non-containerized and containerized execution with Docker, as well as present the cost per simulation in AWS. The results show that our neural simulation pipeline can reduce entry barriers to neural simulations, making them more practical and cost-effective.

4.
Front Neurosci ; 17: 1019778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845422

RESUMO

Brain fog is a kind of mental problem, similar to chronic fatigue syndrome, and appears about 3 months after the infection with COVID-19 and lasts up to 9 months. The maximum magnitude of the third wave of COVID-19 in Poland was in April 2021. The research referred here aimed at carrying out the investigation comprising the electrophysiological analysis of the patients who suffered from COVID-19 and had symptoms of brain fog (sub-cohort A), suffered from COVID-19 and did not have symptoms of brain fog (sub-cohort B), and the control group that had no COVID-19 and no symptoms (sub-cohort C). The aim of this article was to examine whether there are differences in the brain cortical activity of these three sub-cohorts and, if possible differentiate and classify them using the machine-learning tools. he dense array electroencephalographic amplifier with 256 electrodes was used for recordings. The event-related potentials were chosen as we expected to find the differences in the patients' responses to three different mental tasks arranged in the experiments commonly known in experimental psychology: face recognition, digit span, and task switching. These potentials were plotted for all three patients' sub-cohorts and all three experiments. The cross-correlation method was used to find differences, and, in fact, such differences manifested themselves in the shape of event-related potentials on the cognitive electrodes. The discussion of such differences will be presented; however, an explanation of such differences would require the recruitment of a much larger cohort. In the classification problem, the avalanche analysis for feature extractions from the resting state signal and linear discriminant analysis for classification were used. The differences between sub-cohorts in such signals were expected to be found. Machine-learning tools were used, as finding the differences with eyes seemed impossible. Indeed, the A&B vs. C, B&C vs. A, A vs. B, A vs. C, and B vs. C classification tasks were performed, and the efficiency of around 60-70% was achieved. In future, probably there will be pandemics again due to the imbalance in the natural environment, resulting in the decreasing number of species, temperature increase, and climate change-generated migrations. The research can help to predict brain fog after the COVID-19 recovery and prepare the patients for better convalescence. Shortening the time of brain fog recovery will be beneficial not only for the patients but also for social conditions.

5.
Front Hum Neurosci ; 16: 808382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601908

RESUMO

Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Source credibility is among the most important aspects of credibility evaluations. One of the most direct ways to understand source credibility is to use measurements of brain activity of humans who make credibility evaluations. This article reports the results of an experiment during which we have measured brain activity during credibility evaluation using EEG. In the experiment, participants had to learn source credibility of fictitious students based on a preparatory stage, during which they evaluated message credibility with perfect knowledge. The experiment allowed for identification of brain areas that were active when a participant made positive or negative source credibility evaluations. Based on experimental data, we modeled and predicted human source credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7 (using 10-fold cross-validation). We are also able to model and predict message credibility evaluations with perfect knowledge, and to compare both models obtained from a single experiment.

6.
Front Hum Neurosci ; 15: 659243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602991

RESUMO

Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Message credibility is among crucial aspects of credibility evaluations. One of the most direct ways to understand message credibility is to use measurements of brain activity of humans performing credibility evaluations. Nevertheless, message credibility has never been investigated using such a method before. This article reports the results of an experiment during which we have measured brain activity during message credibility evaluation, using EEG. The experiment allowed for identification of brain areas that were active when participant made positive or negative message credibility evaluations. Based on experimental data, we modeled and predicted human message credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7.

7.
Front Hum Neurosci ; 15: 685530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381342

RESUMO

Behavioral and neuroimaging studies show that people trust and collaborate with others based on a quick assessment of the facial appearance. Based on the morphological characteristics of the face, i.e., features, shape, or color, it is possible to determine health, attractiveness, trust, and some personality traits. The study attempts to indicate the features influencing the perception of attractiveness and trust. In order to select individual factors, a model of backward stepwise logistic regression was used, analyzing the results of the psychological tests and the attractiveness and trust survey. Statistical analysis made it possible to select the most important personality traits related to attractiveness and trust assessments.

8.
Front Neuroinform ; 14: 607853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381019

RESUMO

Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Source credibility is among the most important aspects of credibility evaluations. One of the most direct ways to understand source credibility is to use measurements of brain activity of humans performing credibility evaluations. Nevertheless, source credibility has never been investigated using such a method before. This article reports the results of an experiment during which we have measured brain activity during source credibility evaluation, using EEG. The experiment allowed for identification of brain areas that were active when a participant made positive or negative source credibility evaluations. Based on experimental data, we modeled and predicted human source credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7 (using 10-fold cross-validation).

9.
Front Neuroinform ; 13: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827431

RESUMO

The electroencephalographic activity of particular brain areas during the decision making process is still little known. This paper presents results of experiments on the group of 30 patients with a wide range of psychiatric disorders and 41 members of the control group. All subjects were performing the Iowa Gambling Task that is often used for decision process investigations. The electroencephalographical activity of participants was recorded using the dense array amplifier. The most frequently active Brodmann Areas were estimated by means of the photogrammetry techniques and source localization algorithms. The analysis was conducted in the full frequency as well as in alpha, beta, gamma, delta, and theta bands. Next the mean electric charge flowing through each of the most frequently active areas and for each frequency band was calculated. The comparison of the results obtained for the subjects and the control groups is presented. The difference in activity of the selected Brodmann Areas can be observed in all variants of the task. The hyperactivity of amygdala is found in both the patients and the control group. It is noted that the somatosensory association cortex, dorsolateral prefrontal cortex, and primary visual cortex play an important role in the decision-making process as well. Some of our results confirm the previous findings in the fMRI experiments. In addition, the results of the electroencephalographic analysis in the broadband as well as in specific frequency bands were used as inputs to several machine learning classifiers built in Azure Machine Learning environment. Comparison of classifiers' efficiency is presented to some extent and finding the most effective classifier may be important for planning research strategy toward finding decision-making biomarkers in cortical activity for both healthy people and those suffering from psychiatric disorders.

10.
Front Neuroinform ; 12: 78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459588

RESUMO

Brain-Computer Interfaces (BCI) constitute an alternative channel of communication between humans and environment. There are a number of different technologies which enable the recording of brain activity. One of these is electroencephalography (EEG). The most common EEG methods include interfaces whose operation is based on changes in the activity of Sensorimotor Rhythms (SMR) during imagery movement, so-called Motor Imagery BCI (MIBCI).The present article is a review of 131 articles published from 1997 to 2017 discussing various procedures of data processing in MIBCI. The experiments described in these publications have been compared in terms of the methods used for data registration and analysis. Some of the studies (76 reports) were subjected to meta-analysis which showed corrected average classification accuracy achieved in these studies at the level of 51.96%, a high degree of heterogeneity of results (Q = 1806577.61; df = 486; p < 0.001; I 2 = 99.97%), as well as significant effects of number of channels, number of mental images, and method of spatial filtering. On the other hand the meta-regression failed to provide evidence that there was an increase in the effectiveness of the solutions proposed in the articles published in recent years. The authors have proposed a newly developed standard for presenting results acquired during MIBCI experiments, which is designed to facilitate communication and comparison of essential information regarding the effects observed. Also, based on the findings of descriptive analysis and meta-analysis, the authors formulated recommendations regarding practices applied in research on signal processing in MIBCIs.

11.
Front Neuroinform ; 12: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405386

RESUMO

There are still no good quantitative methods to be applied in psychiatric diagnosis. The interview is still the main and most important tool in the psychiatrist work. This paper presents the results of electroencephalographic research with the subjects of a group of 30 patients with psychiatric disorders compared to the control group of healthy volunteers. All subjects were solving working memory task. The digit-span working memory task test was chosen as one of the most popular tasks given to subjects with cognitive dysfunctions, especially for the patients with panic disorders, depression (including the depressive phase of bipolar disorder), phobias, and schizophrenia. Having such cohort of patients some results for the subjects with insomnia and Asperger syndrome are also presented. The cortical activity of their brains was registered by the dense array EEG amplifier. Source localization using the photogrammetry station and the sLORETA algorithm was then performed in five EEG frequency bands. The most active Brodmann Areas are indicated. Methodology for mapping the brain and research protocol are presented. The first results indicate that the presented technique can be useful in finding psychiatric disorder neurophysiological biomarkers. The first attempts were made to associate hyperactivity of selected Brodmann Areas with particular disorders.

12.
Front Neuroinform ; 12: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881339

RESUMO

The interview is still the main and most important tool in psychiatrist's work. The neuroimaging methods such as CT or MRI are widely used in other fields of medicine, for instance neurology. However, psychiatry lacks effective quantitative methods to support of diagnosis. A novel neuroinformatic approach to help clinical patients by means of electroencephalographic technology in order to build foundations for finding neurophysiological biomarkers of psychiatric disorders is proposed. A cohort of 30 right-handed patients (21 males, 9 females) with psychiatric disorders (mainly with panic and anxiety disorder, Asperger syndrome as well as with phobic anxiety disorders, schizophrenia, bipolar affective disorder, obsessive-compulsive disorder, nonorganic hypersomnia, and moderate depressive episode) were examined using the dense array EEG amplifier in the P300 experiment. The results were compared with the control group of 30 healthy, right-handed male volunteers. The quantitative analysis of cortical activity was conducted using the sLORETA source localization algorithm. The most active Brodmann Areas were pointed out and a new quantitative observable of electrical charge flowing through the selected Brodmann Area is proposed. The precise methodology and research protocol for collecting EEG data as well as the roadmap of future investigations in this area are presented. The essential result of this study is the idea proven by the initial results of our experiments that it is possible to determine quantitatively biomarkers of particular psychiatric disorders in order to support the process of diagnosis and hopefully choose most appropriate medical treatment later.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA