Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 81(3): 032501, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155414

RESUMO

Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

2.
Rep Prog Phys ; 80(4): 044501, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28303805

RESUMO

We present a theory of the scaling behavior of the thermodynamic, transport and dynamical properties of a three-dimensional metal governed by d-dimensional fluctuations at a quantum critical point, where the electron quasiparticle effective mass diverges. We determine how the critical bosonic order parameter fluctuations are affected by the effective mass divergence. The coupled system of fermions and bosons is found to be governed by two stable fixed points: the conventional weak-coupling fixed point and a new strong-coupling fixed point, provided the boson-boson interaction is irrelevant. The latter fixed point supports hyperscaling, characterized by fractional exponents. The theory is applied to the antiferromagnetic critical point in certain heavy fermion compounds, in which the strong-coupling regime is reached.

3.
Proc Natl Acad Sci U S A ; 109(9): 3238-42, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331893

RESUMO

We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh(2)Si(2), for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results.

4.
Phys Rev Lett ; 110(14): 146602, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167019

RESUMO

We investigate the transport properties of itinerant electrons interacting with a background of localized spins in a correlated paramagnetic phase of the pyrochlore lattice. We find a residual resistivity at zero temperature due to the scattering of electrons by the static dipolar spin-spin correlation that characterizes the metallic Coulomb phase. As temperature increases, thermally excited topological defects, also known as magnetic monopoles, reduce the spin correlation, hence suppressing electron scattering. Combined with the usual scattering processes in metals at higher temperatures, this mechanism yields a nonmonotonic resistivity, displaying a minimum at temperature scales associated with the magnetic monopole excitation energy. Our calculations agree quantitatively with resistivity measurements in Nd(2)Ir(2)O(7) and Pr(2)Ir(2)O(7), shedding light on the origin of the resistivity minimum observed in metallic spin-ice compounds.

5.
Phys Rev Lett ; 111(5): 057001, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952431

RESUMO

Recent experiments on two iron-pnictide families suggest the existence of a single quantum phase transition inside the superconducting dome despite the fact that two separate transition lines--magnetic and nematic-cross the superconducting dome at T(c). Here we argue that these two observations are actually consistent. We show, using a microscopic model, that each order coexists with superconductivity for a wide range of parameters, and both transition lines continue into the superconducting dome below T(c). However, at some T(merge)

6.
Nat Commun ; 11(1): 2023, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332726

RESUMO

The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferromagnetic metal IrMn has been used as the pinning layer in magnetic tunnel junctions that form building blocks for magnetic random access memories and magnetic sensors. Spin pumping experiments revealed that IrMn Néel temperature is thickness-dependent and approaches room temperature when the layer is thin. Here, we report that the Seebeck coefficient is maximum at the Néel temperature of IrMn of 0.6 to 4.0 nm in thickness in IrMn-based half magnetic tunnel junctions. We obtain a record Seebeck coefficient 390 (±10) µV K-1 at room temperature. Our results demonstrate that IrMn-based magnetic devices could harvest the heat dissipation for magnetic sensors, thus contributing to the Power-of-Things paradigm.

8.
J Phys Condens Matter ; 23(9): 094214, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21339567

RESUMO

We argue that the hidden order (HO) state in URu2Si2 will induce a charge density wave. The modulation vector of the charge density wave will be twice that of the hidden order state, Q(CDW) = 2Q(HO). To illustrate how the charge density wave arises we use a Ginzburg-Landau theory that contains a coupling of the charge density wave amplitude to the square of the HO order parameter Δ(HO). This simple analysis allows us to predict the intensity and temperature dependence of the charge density wave order parameter in terms of the susceptibilities and coupling constants used in the Ginzburg-Landau analysis.

9.
Phys Rev Lett ; 102(21): 216803, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519125

RESUMO

We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA