Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1859(7): 833-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27080130

RESUMO

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system.


Assuntos
Células-Tronco Neurais/fisiologia , Neurogênese/genética , Receptores de Progesterona/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Gravidez , RNA Interferente Pequeno/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Transativadores
2.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722569

RESUMO

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Assuntos
Antioxidantes , Corpo Estriado , Estresse Oxidativo , Animais , Camundongos , Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Olho/metabolismo , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Corpo Estriado/fisiologia
3.
J Mol Med (Berl) ; 98(6): 849-862, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32394396

RESUMO

Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER Ca2+ leak channel and its deficiency enhances susceptibility to ER stress due to inhibition of the ER stress sensor IRE1α. It was previously shown that TMBIM6 overexpression improves glucose metabolism and that TMBIM6 knockout mice develop obesity. We here examined the metabolic alterations underlying the obese phenotype and subjected TMBIM6 knockout mice to indirect calorimetry and euglycemic-hyperinsulinemic tests with stable isotope dilution to gauge tissue-specific insulin sensitivity. This demonstrated no changes in heat production, food intake, activity or hepatic and peripheral insulin sensitivity. TMBIM6 knockout mice, however, featured a higher glucose-stimulated insulin secretion in vivo as assessed by the hyperglycemic clamp test and hepatic steatosis. This coincided with profound changes in glucose-mediated Ca2+ regulation in isolated pancreatic ß cells and increased levels of IRE1α levels but no differences in downstream effects of IRE1α like increased Xbp1 mRNA splicing or Ire1-dependent decay of insulin mRNA in the pancreas. We therefore conclude that lack of TMBIM6 does not affect insulin sensitivity but leads to hyperinsulinemia, which serves to explain the weight gain. TMBIM6-mediated metabolic alterations are mainly caused by its role as a Ca2+ release channel in the ER. KEY MESSAGES: TMBIM6-/- leads to obesity and hepatic steatosis. Food intake and energy expenditure are not changed in TMBIM6-/- mice. No changes in insulin resistance in TMBIM6-/- mice. Increased insulin secretion caused by altered calcium dynamics in ß cells.


Assuntos
Cálcio/metabolismo , Suscetibilidade a Doenças , Secreção de Insulina , Proteínas de Membrana/deficiência , Obesidade/etiologia , Obesidade/metabolismo , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Camundongos Knockout , Splicing de RNA , Termogênese/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
Cells ; 9(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977469

RESUMO

The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Membranas Mitocondriais/metabolismo
5.
Mol Neurobiol ; 57(8): 3273-3290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32514861

RESUMO

Probucol, a hypocholesterolemic compound, is neuroprotective in several models of neurodegenerative diseases but has serious adverse effects in vivo. We now describe the design and synthesis of two new probucol analogues that protect against glutamate-induced oxidative cell death, also known as ferroptosis, in cultured mouse hippocampal (HT22) cells and in primary cortical neurons, while probucol did not show any protective effect. Treatment with both compounds did not affect glutathione depletion but still significantly decreased glutamate-induced production of oxidants, mitochondrial superoxide generation, and mitochondrial hyperpolarization in HT22 cells. Both compounds increase glutathione peroxidase (GPx) 1 levels and GPx activity, also exhibiting protection against RSL3, a GPx4 inactivator. These two compounds are therefore potent activators of GPx activity making further studies of their neuroprotective activity in vivo worthwhile.


Assuntos
Ferroptose/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Probucol/farmacologia , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Cells ; 8(10)2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640251

RESUMO

Charcot-Marie tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic, and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented mitochondria but a similar mitochondrial oxygen consumption, membrane potential, and ATP production as wildtype cells. However, when inducing mild oxidative stress 24 h before analysis using 100 µM hydrogen peroxide, R94Q cells exhibited significantly increased respiration but decreased mitochondrial ATP production. This was accompanied by increased glucose uptake and an up-regulation of hexokinase 1 and pyruvate kinase M2, suggesting increased pyruvate shuttling into mitochondria. Interestingly, these changes coincided with decreased levels of PINK1/Parkin-mediated mitophagy in R94Q cells. We conclude that mitochondria harboring the disease-causing R94Q mutation in MFN2 are more susceptible to oxidative stress, which causes uncoupling of respiration and ATP production possibly by a less efficient mitochondrial quality control.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia
7.
Free Radic Biol Med ; 141: 338-347, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279969

RESUMO

Dimethyl fumarate (DMF) is widely used to treat the human autoimmune diseases multiple sclerosis (MS) and psoriasis. DMF causes short-term oxidative stress and activates the antioxidant response via the transcription factor Nrf2 but its immunosuppressive effect is not well understood. Immune cell activation depends on calcium signaling which itself is influenced by the cellular redox state. We therefore measured calcium, reactive oxygen species levels and glutathione content in lymphocytes from immunized mice before onset of experimental autoimmune encephalomyelitis, in peripheral blood mononuclear cells from MS patients treated with DMF, and in mouse splenocytes treated ex vivo with DMF. This demonstrated altered redox states and increased lymphocytic calcium levels in all model systems. DMF caused an immediate influx of calcium from the extracellular space, long-term increased cytosolic calcium levels and reduced calcium stored in intracellular stores. The DMF-elicited current had the electrophysiological characteristics of a transient receptor potential channel and the intracellular calcium levels were normalized by antagonists of TRPA1. Interestingly, the sarco/endoplasmic reticulum Ca2+-ATPase SERCA2b was downregulated but more active due to glutathionylation of the redox-sensitive cysteine 674. DMF therefore causes pleiotropic changes in cellular calcium homeostasis which are likely caused by redox-sensitive post-translational modifications. These changes probably contribute to its immunosuppressive effects.


Assuntos
Fumarato de Dimetilo/farmacologia , Esclerose Múltipla/tratamento farmacológico , Psoríase/tratamento farmacológico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Canal de Cátion TRPA1/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Oxirredução/efeitos dos fármacos , Psoríase/genética , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Neurochem Int ; 117: 167-173, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28527631

RESUMO

Mitofusin-2 (MFN2) is a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. MFN2 also plays a role in mitochondrial fusion induced by changes in the intracellular redox state. Adding oxidized glutathione (GSSG), the core cellular stress indicator, to mitochondrial preparations stimulates mitochondrial fusion by inducing disulphide bond-mediated oligomer formation of MFN2 and its homolog MFN1 which involve cysteine 684 (C684) of MFN2. Mitochondrial hyperfusion represents an adaptive stress response that confers transient protection by increasing mitochondrial ATP production but how this depends on the thiol switch C684 in MFN2 has not been investigated. We now studied mitochondrial function using high-resolution respirometry in cells stably expressing wildtype or C684A MFN2 in MFN2-deficient fibroblasts in response to alterations of the redox state. Empty vector and untransfected cells served as controls. A single treatment of cells with 100 µM hydrogen peroxide 24 h before analysis had no effect on wildtype cells, but normalized the otherwise increased respiration of knockout cells and significantly increased respiration in C684A cells. In line with this, treating permeabilized cells for 10 min with 1 mM GSH greatly reduced respiration only in C684A cells. Our data indicate that mutation of this cysteine which forms disulphide bridges in an oxidative state, apparently renders MFN2 more susceptible to alterations of the redox environment. It remains to be investigated whether other posttranslational modifications like glutathionylation might play an additional role.


Assuntos
Respiração Celular/fisiologia , Forma Celular/fisiologia , GTP Fosfo-Hidrolases/deficiência , Mitocôndrias/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Oxirredução
9.
Free Radic Biol Med ; 112: 350-359, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807815

RESUMO

Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and rescued mouse embryonic fibroblast cell lines. Mitochondria of KO cells were more fragmented, exhibited a reduced ATP concentration, and reduced oxidative phosphorylation (OXPHOS) suggesting an increased importance of ATP generation by other means. Under steady-state conditions, acidification of the growth medium as a readout for glycolysis was similar, but upon inhibition of ATP synthase with oligomycin, KO cells displayed an instant increase in glycolysis. In addition, forced energy production through OXPHOS by replacing glucose with galactose in the growth medium rendered KO cells more susceptible to mitochondrial toxins. KO cells had increased cellular reactive oxygen species and were more susceptible to oxidative stress, but had higher glutathione levels, which were however more rapidly consumed under conditions of oxidative stress. This coincided with an increased activity and protein abundance of the pentose phosphate pathway protein glucose-6-phosphate dehydrogenase, which generates NADPH necessary to regenerate reduced glutathione. KO cells were also less susceptible to pharmacological inhibition of the pentose phosphate pathway. We conclude that mitochondrial Bcl-xL is involved in maintaining mitochondrial respiratory capacity. Its deficiency causes oxidative stress, which is associated with an increased glycolytic capacity and balanced by an increased activity of the pentose phosphate pathway.


Assuntos
Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/genética , Trifosfato de Adenosina/biossíntese , Animais , Cálcio/metabolismo , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose/farmacologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Transporte de Íons , Camundongos , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NADP/metabolismo , Oligomicinas/farmacologia , Estresse Oxidativo , Via de Pentose Fosfato/efeitos dos fármacos , Transdução de Sinais , Proteína bcl-X/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA