Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 148(21): 214701, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884064

RESUMO

Replacing methane with carbon dioxide in gas hydrates has been suggested as a way of harvesting methane, while at the same time storing carbon dioxide. Experimental evidence suggests that this process is facilitated if gas mixtures are used instead of pure carbon dioxide. We studied the free energy barriers for diffusion of methane, carbon dioxide, nitrogen, and hydrogen in the sI hydrate structure using molecular simulation techniques. Cage hops between neighboring cages were considered with and without a water vacancy and with a potential inclusion of an additional gas molecule in either the initial or final cage. Our results give little evidence for enhanced methane and carbon dioxide diffusion if nitrogen is present as well. However, the inclusion of hydrogen seems to have a substantial effect as it diffuses rapidly and can easily enter occupied cages, which reduces the barriers of diffusion for the gas molecules that co-occupy a cage with hydrogen.

2.
Phys Chem Chem Phys ; 17(21): 13808-12, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25959647

RESUMO

The transport of gas molecules in hydrates is presently poorly understood. In sII structured hydrates with hydrogen guests there is, for instance, a mismatch between experimental and computed values for diffusion constants. We provide an explanation for the experimentally observed diffusion rates, using DFT-based molecular dynamics simulations at 100 K. By considering the effect of cage occupancy, as well as the flexibility of the water lattice, we show that barriers for hydrogen diffusing between cages, can approach values as low as 5 kJ mol(-1), which is very close to experimental values.

3.
J Phys Chem B ; 121(30): 7336-7350, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28682631

RESUMO

Molecular Monte Carlo simulations are used to compute the three-phase (hydrate-liquid water-gas) equilibrium lines of methane and carbon dioxide hydrates, using the Transferable Potentials for Phase Equilibria model for carbon dioxide, the united atom optimized potential for liquid simulations model for methane, and the TIP4P/Ice and TIP4P/2005 models for water. The three-phase equilibrium temperatures have been computed for pressures between 50 and 4000 bar via free-energy calculations. The computed results are as expected for methane hydrates but deviate from the direct-coexistence molecular dynamics (MD) studies for carbon dioxide hydrates. At pressures higher than 1000 bar, both the methane and carbon dioxide hydrates dissociate at lower temperatures than expected from experiments and MD studies. The dissociation enthalpy is found to be largely independent on water models, and its values are measured to be 7.6 and 6.0 kJ/mol of water for methane hydrates and carbon dioxide hydrates, respectively. We evaluate the effect of systematic errors on the determination of chemical potentials and show that systematic errors of 0.1 kJ/mol in the chemical potential of water correspond to deviations of 5 K in the three-phase equilibrium temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA