Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Breast Cancer Res Treat ; 198(1): 11-22, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622544

RESUMO

PURPOSE: The number of M1-like and M2-like tumour-associated macrophages (TAMs) and their ratio can play a role in breast cancer development and progression. Early clinical trials using macrophage targeting compounds are currently ongoing. However, the most optimal detection method of M1-like and M2-like macrophage subsets and their clinical relevance in breast cancer is still unclear. We aimed to optimize the assessment of TAM subsets in different breast cancer subtypes, and therefore related TAM subset numbers and ratio to clinicopathological characteristics and clinical outcome. METHODS: Tissue microarrays of 347 consecutive primary Luminal-A, Luminal-B, HER2-positive and triple-negative tumours of patients with early-stage breast cancer were serially sectioned and immunohistochemically stained for the pan-macrophage marker CD68 and the M2-like macrophage markers CD163, CSF-1R and CD206. TAM numbers were quantified using a digital image analysis algorithm. M1-like macrophage numbers were calculated by subtracting M2-like TAM numbers from the total TAM number. RESULTS: M2-like markers CD163 and CSF-1R showed a moderate positive association with each other and with CD68 (r ≥ 0.47), but only weakly with CD206 (r ≤ 0.06). CD68 + , CD163 + and CSF-1R + macrophages correlated with tumour grade in Luminal-B tumours (P < 0.001). Total or subset TAM numbers did not correlate with disease outcome in any breast cancer subtype. CONCLUSION: In conclusion, macrophages and their subsets can be detected by means of a panel of TAM markers and are related to unfavourable clinicopathological characteristics in Luminal-B breast cancer. However, their impact on outcome remains unclear. Preferably, this should be determined in prospective series.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor/patologia , Prognóstico , Macrófagos/patologia , Antígenos de Diferenciação Mielomonocítica
2.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271158

RESUMO

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral
4.
Biomed Pharmacother ; 173: 116362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432130

RESUMO

Reprogrammed metabolism is a hallmark of cancer, but notoriously difficult to target due to metabolic plasticity, especially in response to single metabolic interventions. Combining mTOR inhibitor everolimus and mitochondrial complex 1 inhibitor metformin results in metabolic synergy in in vitro models of triple-negative breast cancer. Here, we investigated whether the effect of this drug combination on tumor size is reflected in changes in tumor metabolism using [U-13C]glucose labeling in an MDA-MB-231 triple negative breast cancer xenograft model. The in vitro effects of everolimus and metformin treatment on oxidative phosphorylation and glycolysis reflected changes in 13C-labeling of metabolites in MDA-MB-231 cells. Treatment of MDA-MB-231 xenografts in SCID/Beige mice with everolimus resulted in slower tumor growth and reduced tumor size and tumor viability by 35%. Metformin treatment moderately inhibited tumor growth but did not enhance everolimus-induced effects. High serum levels of everolimus were reached, whereas levels of metformin were relatively low. Everolimus decreased TCA cycle metabolite labeling and inhibited pyruvate carboxylase activity. Metformin only caused a mild reduction in glycolytic metabolite labeling and did not affect pyruvate carboxylase activity or TCA cycle metabolite labeling. In conclusion, treatment with everolimus, but not metformin, decreased tumor size and viability. Furthermore, the efficacy of everolimus was reflected in reduced 13C-labeling of TCA cycle intermediates and reduced pyruvate carboxylase activity. By using in-depth analysis of drug-induced changes in glucose metabolism in combination with measurement of drug levels in tumor and plasma, effects of metabolically targeted drugs can be explained, and novel targets can be identified.


Assuntos
Neoplasias da Mama , Metformina , Animais , Camundongos , Humanos , Feminino , Everolimo/farmacologia , Glucose/metabolismo , Piruvato Carboxilase , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Camundongos SCID , Metformina/farmacologia
5.
BMC Cancer ; 12: 463, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23046567

RESUMO

BACKGROUND: Only a minority of cancer patients benefits from the combination of EGFR-inhibition and radiotherapy in head and neck squamous cell carcinoma (HNSCC). A potential resistance mechanism is activation of EGFR and/or downstream pathways by stimuli in the microenvironment. The aim of this study was to find molecular targets induced by the microenvironment by determining the in vitro and in vivo expression of proteins of the EGFR-signaling network in 6 HNSCC lines. As hypoxia is an important microenvironmental parameter associated with poor outcome in solid tumors after radiotherapy, we investigated the relationship with hypoxia in vitro and in vivo. METHODS: Six human HNSCC cell lines were both cultured as cell lines (in vitro) and grown as xenograft tumors (in vivo). Expression levels were determined via western blot analysis and localization of markers was assessed via immunofluorescent staining. To determine the effect of hypoxia and pAKT-inhibition on cell survival, cells were incubated at 0.5% O(2) and treated with MK-2206. RESULTS: We observed strong in vitro-in vivo correlations for EGFR, pEGFR and HER2 (rs = 0.77, p = 0.10, rs = 0.89, p = 0.03) and rs = 0.93, p = 0.02, respectively), but not for pAKT, pERK1/2 or pSTAT3 (all r(s)<0.55 and p>0.30). In vivo, pAKT expression was present in hypoxic cells and pAKT and hypoxia were significantly correlated (rs = 0.51, p = 0.04). We confirmed in vitro that hypoxia induces activation of AKT. Further, pAKT-inhibition via MK-2206 caused a significant decrease in survival in hypoxic cells (p<0.01), but not in normoxic cells. CONCLUSIONS: These data suggest that (p)EGFR and HER2 expression is mostly determined by intrinsic features of the tumor cell, while the activation of downstream kinases is highly influenced by the tumor microenvironment. We show that hypoxia induces activation of AKT both in vitro and in vivo, and that hypoxic cells can be specifically targeted by pAKT-inhibition. Targeting pAKT is thus a potential way to overcome therapy resistance induced by hypoxia and improve patient outcome.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Receptores ErbB/antagonistas & inibidores , Imunofluorescência , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Hipóxia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nitroimidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Radioterapia/métodos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Nucl Med ; 63(11): 1715-1721, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35422447

RESUMO

The mesothelin (MSLN)-targeted 227Th conjugate is a novel α-therapy developed to treat MSLN-overexpressing cancers. We radiolabeled the same antibody-chelator conjugate with 89Zr to evaluate whether PET imaging with 89Zr-MSLN matches 227Th-MSLN tumor uptake, biodistribution, and antitumor activity. Methods: Serial PET imaging with protein doses of 4, 20, or 40 µg of 89Zr-MSLN and 89Zr-control was performed up to 168 h after tracer injection in human tumor-bearing nude mice with high (HT29-MSLN) and low (BxPc3) MSLN expression. 89Zr-MSLN and 227Th-MSLN ex vivo tumor uptake and biodistribution were compared at 6 time points in HT29-MSLN and in medium-MSLN-expressing (OVCAR-3) tumor-bearing mice. 89Zr-MSLN PET imaging was performed before 227Th-MSLN treatment in HT29-MSLN and BxPc3 tumor-bearing mice. Results: 89Zr-MSLN PET imaging showed an SUVmean of 2.2 ± 0.5 in HT29-MSLN tumors. Ex vivo tumor uptake was 10.6% ± 2.4% injected dose per gram at 168 h. 89Zr-MSLN tumor uptake was higher than uptake of 89Zr-control (P = 0.0043). 89Zr-MSLN and 227Th-MSLN showed comparable tumor uptake and biodistribution in OVCAR-3 and HT29-MSLN tumor-bearing mice. Pretreatment SUVmean was 2.2 ± 0.2 in HT29-MSLN tumors, which decreased in volume on 227Th-MSLN treatment. BxPc3 tumors showed an SUVmean of 1.2 ± 0.3 and remained similar in size after 227Th-MSLN treatment. Conclusion: 89Zr-MSLN PET imaging reflected MSLN expression and matched 227Th-MSLN tumor uptake and biodistribution. Our data support the clinical exploration of 89Zr-MSLN PET imaging together with 227Th-MSLN therapy, both using the same antibody-chelator conjugate.


Assuntos
Imunoconjugados , Neoplasias Ovarianas , Animais , Humanos , Camundongos , Feminino , Mesotelina , Camundongos Nus , Distribuição Tecidual , Apoptose , Linhagem Celular Tumoral , Zircônio/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Quelantes
7.
Front Oncol ; 11: 786191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976826

RESUMO

Macrophages can promote tumor development. Preclinically, targeting macrophages by colony-stimulating factor 1 (CSF1)/CSF1 receptor (CSF1R) monoclonal antibodies (mAbs) enhances conventional therapeutics in combination treatments. The physiological distribution and tumor uptake of CSF1R mAbs are unknown. Therefore, we radiolabeled a murine CSF1R mAb and preclinically visualized its biodistribution by PET. CSF1R mAb was conjugated to N-succinyl-desferrioxamine (N-suc-DFO) and subsequently radiolabeled with zirconium-89 (89Zr). Optimal protein antibody dose was first determined in non-tumor-bearing mice to assess physiological distribution. Next, biodistribution of optimal protein dose and 89Zr-labeled isotype control was compared with PET and ex vivo biodistribution after 24 and 72 h in mammary tumor-bearing mice. Tissue autoradiography and immunohistochemistry determined radioactivity distribution and tissue macrophage presence, respectively. [89Zr]Zr-DFO-N-suc-CSF1R-mAb optimal protein dose was 10 mg/kg, with blood pool levels of 10 ± 2% injected dose per gram tissue (ID/g) and spleen and liver uptake of 17 ± 4 and 11 ± 4%ID/g at 72 h. In contrast, 0.4 mg/kg of [89Zr]Zr-DFO-N-suc-CSF1R mAb was eliminated from circulation within 24 h; spleen and liver uptake was 126 ± 44% and 34 ± 7%ID/g, respectively. Tumor-bearing mice showed higher uptake of [89Zr]Zr-DFO-N-suc-CSF1R-mAb in the liver, lymphoid tissues, duodenum, and ileum, but not in the tumor than did 89Zr-labeled control at 72 h. Immunohistochemistry and autoradiography showed that 89Zr was localized to macrophages within lymphoid tissues. Following [89Zr]Zr-DFO-N-suc-CSF1R-mAb administration, tumor macrophages were almost absent, whereas isotype-group tumors contained over 500 cells/mm2. We hypothesize that intratumoral macrophage depletion by [89Zr]Zr-DFO-N-suc-CSF1R-mAb precluded tumor uptake higher than 89Zr-labeled control. Translation of molecular imaging of macrophage-targeting therapeutics to humans may support macrophage-directed therapeutic development.

8.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32217763

RESUMO

BACKGROUND: Bispecific antibodies redirecting T cells to the tumor obtain increasing interest as potential cancer immunotherapy. ERY974, a full-length bispecific antibody targeting CD3ε on T cells and glypican 3 (GPC3) on tumors, has been in clinical development However, information on the influence of T cells on biodistribution of bispecific antibodies, like ERY974, is scarce. Here, we report the biodistribution and tumor targeting of zirconium-89 (89Zr) labeled ERY974 in mouse models using immuno-positron emission tomography (PET) imaging. METHODS: To study both the role of GPC3 and CD3 on the biodistribution of [89Zr]Zr-N-suc-Df-ERY974, 89Zr-labeled control antibodies targeting CD3 and non-mammalian protein keyhole limpet hemocyanin (KLH) or KLH only were used. GPC3 dependent tumor targeting of [89Zr]Zr-N-suc-Df-ERY974 was tested in xenograft models with different levels of GPC3 expression. In addition, CD3 influence on biodistribution of [89Zr]Zr-N-suc-Df-ERY974 was evaluated by comparing biodistribution between tumor-bearing immunodeficient mice and mice reconstituted with human immune cells using microPET imaging and ex vivo biodistribution. Ex vivo autoradiography was used to study deep tissue distribution. RESULTS: In tumor-bearing immunodeficient mice, [89Zr]Zr-N-suc-Df-ERY974 tumor uptake was GPC3 dependent and specific over [89Zr]Zr-N-suc-Df-KLH/CD3 and [89Zr]Zr-N-suc-Df-KLH/KLH. In mice engrafted with human immune cells, [89Zr]Zr-N-suc-Df-ERY974 specific tumor uptake was higher than in immunodeficient mice. Ex vivo autoradiography demonstrated a preferential distribution of [89Zr]Zr-N-suc-Df-ERY974 to T cell rich tumor tissue. Next to tumor, highest specific [89Zr]Zr-N-suc-Df-ERY974 uptake was observed in spleen and lymph nodes. CONCLUSION: [89Zr]Zr-N-suc-Df-ERY974 can potentially be used to study ERY974 biodistribution in patients to support drug development.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Glipicanas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Radioisótopos/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/química
9.
Clin Cancer Res ; 25(12): 3517-3527, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745297

RESUMO

PURPOSE: Biodistribution of bispecific antibodies in patients is largely unknown. We therefore performed a feasibility study in 9 patients with advanced gastrointestinal adenocarcinomas to explore AMG 211 biodistribution (also known as MEDI-565), an approximately 55 kDa bispecific T-cell engager (BiTE®) directed against carcinoembryonic antigen (CEA) on tumor cells and cluster of differentiation 3 (CD3) on T-cells. EXPERIMENTAL DESIGN: 89Zr-labeled AMG 211 as tracer was administered alone or with cold AMG 211, for PET imaging before and/or during AMG 211 treatment. RESULTS: Before AMG 211 treatment, the optimal imaging dose was 200-µg 89Zr-AMG 211 + 1,800-µg cold AMG 211. At 3 hours, the highest blood pool standardized uptake value (SUV)mean was 4.0, and tracer serum half-life was 3.3 hours. CD3-mediated uptake was clearly observed in CD3-rich lymphoid tissues including spleen and bone marrow (SUVmean 3.2 and 1.8, respectively), and the SUVmean decreased more slowly than in other healthy tissues. 89Zr-AMG 211 remained intact in plasma and was excreted predominantly via the kidneys in degraded forms. Of 43 visible tumor lesions, 37 were PET quantifiable, with a SUVmax of 4.0 [interquartile range (IQR) 2.7-4.4] at 3 hours using the optimal imaging dose. The tracer uptake differed between tumor lesions 5-fold within and 9-fold between patients. During AMG 211 treatment, tracer was present in the blood pool, whereas tumor lesions were not visualized, possibly reflecting target saturation. CONCLUSIONS: This first-in-human study shows high, specific 89Zr-AMG 211 accumulation in CD3-rich lymphoid tissues, as well as a clear, inter- and intraindividual heterogeneous tumor uptake.


Assuntos
Adenocarcinoma/metabolismo , Anticorpos Biespecíficos/farmacocinética , Neoplasias Gastrointestinais/metabolismo , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Linfócitos T/imunologia , Zircônio/farmacocinética , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/tratamento farmacológico , Idoso , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/uso terapêutico , Complexo CD3/imunologia , Antígeno Carcinoembrionário/imunologia , Antígeno Carcinoembrionário/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/imunologia , Linfócitos T/metabolismo , Distribuição Tecidual , Zircônio/administração & dosagem
10.
J Nucl Med ; 59(5): 726-732, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29371402

RESUMO

Development of new oncology drugs has increased since the improved understanding of cancer's complex biology. The oncology field has become the top therapeutic research area for new drugs. However, only a limited number of drugs entering clinical trials will be approved for use as the standard of care for cancer patients. Molecular imaging is increasingly perceived as a tool to support go/no-go decisions early during drug development. It encompasses a wide range of techniques that include radiolabeling a compound of interest followed by visualization with SPECT or PET. Radiolabeling can be performed using a variety of radionuclides, which are preferably matched to the compound on the basis of size and half-life. Imaging can provide information on drug behavior in vivo, whole-body drug target visualization, and heterogeneity in drug target expression. This review focuses on current applications of molecular imaging in the development of small molecules, antibodies, and antihormonal anticancer drugs.


Assuntos
Desenvolvimento de Medicamentos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Receptores de Activinas Tipo II/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Biópsia , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Humanos , Imagem Óptica , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Receptores de Fatores de Crescimento/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único
11.
Cancer Treat Rev ; 70: 178-189, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30227299

RESUMO

Tumor-associated macrophages (TAMs) are important tumor-promoting cells in the breast tumor microenvironment. Preclinically TAMs stimulate breast tumor progression, including tumor cell growth, invasion and metastasis. TAMs also induce resistance to multiple types of treatment in breast cancer models. The underlying mechanisms include: induction and maintenance of tumor-promoting phenotype in TAMs, inhibition of CD8+ T cell function, degradation of extracellular matrix, stimulation of angiogenesis and inhibition of phagocytosis. Several studies reported that high TAM infiltration of breast tumors is correlated with a worse patient prognosis. Based on these findings, macrophage-targeted treatment strategies have been developed and are currently being evaluated in clinical breast cancer trials. These strategies include: inhibition of macrophage recruitment, repolarization of TAMs to an antitumor phenotype, and enhancement of macrophage-mediated tumor cell killing or phagocytosis. This review summarizes the functional aspects of TAMs and the rationale and current evidence for TAMs as a therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Macrófagos/patologia , Microambiente Tumoral , Progressão da Doença , Feminino , Humanos , Prognóstico
12.
Clin Cancer Res ; 24(20): 4988-4996, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980531

RESUMO

Purpose: AMG 211, a bispecific T-cell engager (BiTE) antibody construct, targets carcinoembryonic antigen (CEA) and the CD3 epsilon subunit of the human T-cell receptor. AMG 211 was labeled with zirconium-89 (89Zr) or fluorescent dye to evaluate the tumor-targeting properties.Experimental Design: 89Zr-AMG211 was administered to mice bearing CEA-positive xenograft tumors of LS174T colorectal adenocarcinoma or BT474 breast cancer cells, as well as CEA-negative HL-60 promyelocytic leukemia xenografts. Biodistribution studies with 2- to 10-µg 89Zr-AMG211 supplemented with unlabeled AMG 211 up to 500-µg protein dose were performed. A BiTE that does not bind CEA, 89Zr-Mec14, served as a negative control. 89Zr-AMG211 integrity was determined in tumor lysates ex vivo Intratumoral distribution was studied with IRDye800CW-AMG211. Moreover, 89Zr-AMG211 was manufactured according to Good Manufacturing Practice (GMP) guidelines for clinical trial NCT02760199Results: 89Zr-AMG211 demonstrated dose-dependent tumor uptake at 6 hours. The highest tumor uptake was observed with a 2-µg dose, and the lowest tumor uptake was observed with a 500-µg dose. After 24 hours, higher uptake of 10-µg 89Zr-AMG211 occurred in CEA-positive xenografts, compared with CEA-negative xenografts. Although the blood half-life of 89Zr-AMG211 was approximately 1 hour, tumor retention persisted for at least 24 hours. 89Zr-Mec14 showed no tumor accumulation beyond background level. Ex vivo autoradiography revealed time-dependent disintegration of 89Zr-AMG211. 800CW-AMG211 was specifically localized in CEA-expressing viable tumor tissue. GMP-manufactured 89Zr-AMG211 fulfilled release specifications.Conclusions: 89Zr-AMG211 showed dose-dependent CEA-specific tumor targeting and localization in viable tumor tissue. Our data enabled its use to clinically evaluate AMG 211 in vivo behavior. Clin Cancer Res; 24(20); 4988-96. ©2018 AACR.


Assuntos
Anticorpos Biespecíficos , Antígeno Carcinoembrionário/imunologia , Imagem Molecular , Neoplasias/diagnóstico por imagem , Radioisótopos , Linfócitos T/metabolismo , Zircônio , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Citometria de Fluxo , Xenoenxertos , Humanos , Camundongos , Imagem Molecular/métodos , Neoplasias/imunologia , Neoplasias/terapia , Tomografia por Emissão de Pósitrons , Linfócitos T/imunologia
13.
J Nucl Med ; 57(5): 812-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26848172

RESUMO

UNLABELLED: AMG 110, a bispecific T cell engager (BiTE) antibody construct, induces T cell-mediated cancer cell death by cross-linking epithelial cell adhesion molecule (EpCAM) on tumor cells with a cluster of differentiation 3 ε (CD3ε) on T cells. We labeled AMG 110 with (89)Zr or near-infrared fluorescent dye (IRDye) 800CW to study its tumor targeting and tissue distribution. METHODS: Biodistribution and tumor uptake of (89)Zr-AMG 110 was studied up to 6 d after intravenous administration to nude BALB/c mice bearing high EpCAM-expressing HT-29 colorectal cancer xenografts. Tumor uptake of (89)Zr-AMG 110 was compared with uptake in head and neck squamous cell cancer FaDu (intermediate EpCAM) and promyelocytic leukemia HL60 (EpCAM-negative) xenografts. Intratumoral distribution in HT-29 tumors was studied using 800CW-AMG 110. RESULTS: Tumor uptake of (89)Zr-AMG 110 can be clearly visualized using small-animal PET imaging up to 72 h after injection. The highest tumor uptake of (89)Zr-AMG 110 at the 40-µg dose level was observed at 6 and 24 h (respectively, 5.35 ± 0.22 and 5.30 ± 0.20 percentage injected dose per gram; n = 3 and 4). Tumor uptake of (89)Zr-AMG 110 was EpCAM-specific and correlated with EpCAM expression. 800CW-AMG 110 accumulated at the tumor cell surface in viable EpCAM-expressing tumor tissue. CONCLUSION: PET and fluorescent imaging provided real-time information about AMG 110 distribution and tumor uptake in vivo. Our data support using (89)Zr and IRDye 800CW to evaluate tumor and tissue uptake kinetics of bispecific T cell engager antibody constructs in preclinical and clinical settings.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Molécula de Adesão da Célula Epitelial/imunologia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Linfócitos T/imunologia , Zircônio , Animais , Células HL-60 , Células HT29 , Humanos , Marcação por Isótopo , Masculino , Camundongos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA