Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404881, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975802

RESUMO

We report on the supercapacitive swing adsorption (SSA) of carbon dioxide at different voltage windows in the presence of oxygen using activated carbon electrodes, and deliquescent, aqueous electrolytes. The presence of O2 in the CO2/N2 gas mixture results in an up to 11 times higher CO2 adsorption capacity with 3M MgBr2 (at 0.6V) and up to 4-5 times higher adsorption capacity with 3M MgCl2 (at 1V). A tradeoff between high CO2 adsorption capacities and lower coulombic efficiencies was observed at voltages above 0.6V. The energetic and adsorptive performance of the electrodes in the presence of oxygen below 0.5V was similar to the performance with a CO2/N2 mixture without oxygen at 1V. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the electrodes demonstrate that the specific capacitance increases while the diffusion resistance decreases in the presence of oxygen. Oxygen concentrations ranging between 5-20% give similar energetic and adsorptive performance. The electrodes exhibit stable performance for up to 100 cycles of operation.

2.
J Phys Chem A ; 127(1): 240-249, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563176

RESUMO

The selective catalytic reduction (SCR) of NO by NH3 on metal oxides plays a key role in minimizing NOx emissions. Electronic structure calculations at the density functional theory level have been performed to predict the vibrational modes of NH3/NH4+ bound to validated cluster models of vanadium oxide bound to a TiO2 surface. Excellent agreement of the scaled calculated values with the observed bands attributed to surface-bound species is found. The presence of NH3 bound to Lewis acid sites and NH4+ bound to Brønsted acid sites when VOH groups are present is supported by our predictions. NH4+ is expected to dominate the spectra even at low concentrations, with predicted intensities 5 to 30 times greater than those predicted for surface-bound NH3. This is particularly evident in the lowest-energy N-H stretches of surface NH4+ due to partial proton transfer interactions with the vanadium oxide surface model. The current work is consistent with experimental vibrational spectroscopy results and does not support the presence of a significant amount of NH2 on the catalyst surface for the SCR reaction on VOx/TiO2. The combined experimental and computational results support the presence of both NH3- and NH4+-type species bound to the surface.

3.
Chem Soc Rev ; 50(2): 1251-1268, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284308

RESUMO

This review focuses on recent fundamental insights about methane dehydroaromatization (MDA) to benzene over ZSM-5-supported transition metal oxide-based catalysts (MOx/ZSM-5, where M = V, Cr, Mo, W, Re, Fe). Benzene is an important organic intermediate, used for the synthesis of chemicals like ethylbenzene, cumene, cyclohexane, nitrobenzene and alkylbenzene. Current production of benzene is primarily from crude oil processing, but due to the abundant availability of natural gas, there is much recent interest in developing direct processes to convert CH4 to liquid chemicals. Among the various gas-to-liquid methods, the thermodynamically-limited Methane DehydroAromatization (MDA) to benzene under non-oxidative conditions appears very promising as it circumvents deep oxidation of CH4 to CO2 and does not require the use of a co-reactant. The findings from the MDA catalysis literature is critically analyzed with emphasis on in situ and operando spectroscopic characterization to understand the molecular level details regarding the catalytic sites before and during the MDA reaction. Specifically, this review discusses the anchoring sites of the supported MOx species on the ZSM-5 support, molecular structures of the initial dispersed surface MOx sites, nature of the active sites during MDA, reaction mechanisms, rate-determining step, kinetics and catalyst activity of the MDA reaction. Finally, suggestions are given regarding future experimental investigations to fill the information gaps currently found in the literature.

4.
Angew Chem Int Ed Engl ; 60(39): 21502-21511, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34339591

RESUMO

The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.

5.
J Am Chem Soc ; 141(19): 7990-7999, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021093

RESUMO

The water gas shift (WGS) reaction is of paramount importance for the chemical industry, as it constitutes, coupled with methane reforming, the main industrial route to produce hydrogen. Copper-chromium-iron oxide-based catalysts have been widely used for the high-temperature WGS reaction industrially. The WGS reaction mechanism by the CuCrFeO x catalyst has been debated for years, mainly between a "redox" mechanism involving the participation of atomic oxygen from the catalyst and an "associative" mechanism proceeding via a surface formate-like intermediate. In the present work, advanced in situ characterization techniques (infrared spectroscopy, temperature-programmed surface reaction (TPSR), near-ambient pressure XPS (NAP-XPS), and inelastic neutron scattering (INS)) were applied to determine the nature of the catalyst surface and identify surface intermediate species under WGS reaction conditions. The surface of the CuCrFeO x catalyst is found to be dynamic and becomes partially reduced under WGS reaction conditions, forming metallic Cu nanoparticles on Fe3O4. Neither in situ IR not INS spectroscopy detect the presence of surface formate species during WGS. TPSR experiments demonstrate that the evolution of CO2 and H2 from the CO/H2O reactants follows different kinetics than the evolution of CO2 and H2 from HCOOH decomposition (molecule mimicking the associative mechanism). Steady-state isotopic transient kinetic analysis (SSITKA) (CO + H216O → CO + H218O) exhibited significant 16O/18O scrambling, characteristic of a redox mechanism. Computed activation energies for elementary steps for the redox and associative mechanism by density functional theory (DFT) simulations indicate that the redox mechanism is favored over the associative mechanism. The combined spectroscopic, computational, and kinetic evidence in the present study finally resolves the WGS reaction mechanism on the industrial-type high-temperature CuCrFeO x catalyst that is shown to proceed via the redox mechanism.

6.
Angew Chem Int Ed Engl ; 58(27): 9083-9087, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074080

RESUMO

The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts.

7.
Angew Chem Int Ed Engl ; 58(36): 12609-12616, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31283870

RESUMO

The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2 O5 (-WO3 )/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long-standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2 , implying a 2-site mechanism. Unreactive surface tungsta (WO3 ) also promote the formation of oligomeric vanadia (V2 O5 ) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual-site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2 O5 /TiO2 catalysts.

8.
J Am Chem Soc ; 139(44): 15624-15627, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29059518

RESUMO

Time-resolved in situ IR was performed during selective catalytic reduction of NO with NH3 on supported V2O5-WO3/TiO2 catalysts to examine the distribution and reactivity of surface ammonia species on Lewis and Brønsted acid sites. While both species were found to participate in the SCR reaction, their relative population depends on the coverage of the surface vanadia and tungsta sites, temperature, and moisture. Although the more abundant surface NH4+,ads intermediates dominate the overall SCR reaction, especially for hydrothermally aged catalysts, the minority surface NH3,ads intermediates exhibit a higher specific SCR activity (TOF). The current study serves to resolve the long-standing controversy about the active sites for SCR of NO with NH3 by supported V2O5-WO3/TiO2 catalysts.

9.
ACS Catal ; 14(1): 406-417, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205022

RESUMO

The oxygen species on Ag catalysts and reaction mechanisms for ethylene epoxidation and ethylene combustion continue to be debated in the literature despite decades of investigation. Fundamental details of ethylene oxidation by supported Ag/α-Al2O3 catalysts were revealed with the application of high-angle annular dark-field-scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS), in situ techniques (Raman, UV-vis, X-ray diffraction (XRD), HS-LEIS), chemical probes (C2H4-TPSR and C2H4 + O2-TPSR), and steady-state ethylene oxidation and SSITKA (16O2 → 18O2 switch) studies. The Ag nanoparticles are found to carry a considerable amount of oxygen after the reaction. Density functional theory (DFT) calculations indicate the oxidative reconstructed p(4 × 4)-O-Ag(111) surface is stable relative to metallic Ag(111) under the relevant reaction environment. Multiple configurations of reactive oxygen species are present, and their relevant concentrations depend on treatment conditions. Selective ethylene oxidation to EO proceeds with surface Ag4-O2* species (dioxygen species occupying an oxygen site on a p(4 × 4)-O-Ag(111) surface) only present after strong oxidation of Ag. These experimental findings are strongly supported by the associated DFT calculations. Ethylene epoxidation proceeds via a Langmuir-Hinshelwood mechanism, and ethylene combustion proceeds via combined Langmuir-Hinshelwood (predominant) and Mars-van Krevelen (minor) mechanisms.

10.
Nat Commun ; 15(1): 3592, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678057

RESUMO

Supported nanoclusters (SNCs) with distinct geometric and electronic structures have garnered significant attention in the field of heterogeneous catalysis. However, their directed synthesis remains a challenge due to limited efficient approaches. This study presents a plasma-assisted treatment strategy to achieve supported metal oxide nanoclusters from a rapid transformation of monomeric dispersed metal oxides. As a case study, oligomeric vanadia-dominated surface sites were derived from the classic supported V2O5-WO3/TiO2 (VWT) catalyst and showed nearly an order of magnitude increase in turnover frequency (TOF) value via an H2-plasma treatment for selective catalytic reduction of NO with NH3. Such oligomeric surface VOx sites were not only successfully observed and firstly distinguished from WOx and TiO2 by advanced electron microscopy, but also facilitated the generation of surface amide and nitrates intermediates that enable barrier-less steps in the SCR reaction as observed by modulation excitation spectroscopy technologies and predicted DFT calculations.

11.
Angew Chem Int Ed Engl ; 52(51): 13553-7, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24259425

RESUMO

Highly dispersed molybdenum oxide supported on mesoporous silica SBA-15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2-2.5 Mo atoms nm(-2) ). X-ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature-programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O-K-edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.

12.
ACS Catal ; 13(19): 12681-12691, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822859

RESUMO

The effect of Ce addition to the Cr-free Al-promoted Cu-Fe oxide-based catalysts is investigated. Catalyst characterization (X-ray diffraction (XRD), in situ Raman spectroscopy, high-sensitivity low-energy ion scattering (HS-LEIS), Brunauer-Emmett-Teller (BET) analysis), CO-temperature-programmed reduction chemical probing, and steady-state WGS activity reveal that (i) in the absence of Al, Ce addition via coprecipitation has a detrimental effect on the catalytic activity related to the poor thermostability and formation of less active Ce-Cu-O NPs, (ii) the addition of Ce via coprecipitation also does not improve the performance of the CuAlFe catalyst because of the formation of a thick CeOx overlayer on the active Cu-FeOx interface, and (iii) impregnation of Ce onto the CuAlFe catalyst exhibits significant improvement in catalytic performance due to the formation of a highly active CeOx-FeOx-Cu interfacial area. In summary, Al does not surface-segregate and serves as a structural promoter, while Ce and Cu surface-segregate and act as functional promoters in Ce/CuAlFe mixed oxide catalysts.

13.
Nat Commun ; 14(1): 7749, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012194

RESUMO

The oxidative coupling of methane to higher hydrocarbons offers a promising autothermal approach for direct methane conversion, but its progress has been hindered by yield limitations, high temperature requirements, and performance penalties at practical methane partial pressures (~1 atm). In this study, we report a class of Li2CO3-coated mixed rare earth oxides as highly effective redox catalysts for oxidative coupling of methane under a chemical looping scheme. This catalyst achieves a single-pass C2+ yield up to 30.6%, demonstrating stable performance at 700 °C and methane partial pressures up to 1.4 atm. In-situ characterizations and quantum chemistry calculations provide insights into the distinct roles of the mixed oxide core and Li2CO3 shell, as well as the interplay between the Pr oxidation state and active peroxide formation upon Li2CO3 coating. Furthermore, we establish a generalized correlation between Pr4+ content in the mixed lanthanide oxide and hydrocarbons yield, offering a valuable optimization strategy for this class of oxidative coupling of methane redox catalysts.

14.
JACS Au ; 2(3): 762-776, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35388376

RESUMO

Titania-supported vanadia (VO x /TiO2) catalysts exhibit outstanding catalytic in a number of selective oxidation and reduction processes. In spite of numerous investigations, the nature of redox transformations of vanadium and titanium involved in various catalytic processes remains difficult to detect and correlate to the rate of products formation. In this work, we studied the redox dynamics of active sites in a bilayered 5% V2O5/15% TiO2/SiO2 catalyst (consisting of submonolayer VO x species anchored onto a TiO x monolayer, which in turn is supported on SiO2) during the oxidative dehydrogenation of ethanol. The VO x species in 5% V2O5/15% TiO2/SiO2 show high selectivity to acetaldehyde and an ca. 40 times higher acetaldehyde formation rate in comparison to VO x species supported on SiO2 with a similar density. Operando time-resolved V and Ti K-edge X-ray absorption near-edge spectroscopy, coupled with a transient experimental strategy, quantitatively showed that the formation of acetaldehyde over 5% V2O5/15% TiO2/SiO2 is kinetically coupled to the formation of a V4+ intermediate, while the formation of V3+ is delayed and 10-70 times slower. The low-coordinated nature of various redox states of VO x species (V5+, V4+, and V3+) in the 5% V2O5/15% TiO2/SiO2 catalyst is confirmed using the extensive database of V K-edge XANES spectra of standards and specially synthesized molecular crystals. Much weaker redox activity of the Ti4+/Ti3+ couple was also detected; however, it was found to not be kinetically coupled to the rate-determining step of ethanol oxidation. Thus, the promoter effect of TiO x is rather complex. TiO x species might be involved in a fast electron transport between VO x species and might affect the electronic structure of VO x , thereby promoting their reducibility. This study demonstrates the high potential of element-specific operando X-ray absorption spectroscopy for uncovering complex catalytic mechanisms involving the redox kinetics of various metal oxides.

15.
Chem Soc Rev ; 39(12): 5002-17, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21038054

RESUMO

The molecular aspect of the Raman vibrational selection rules allows for the molecular structural and reactivity determinations of metal oxide catalytic active sites in all types of oxide catalyst systems (supported metal oxides, zeolites, layered hydroxides, polyoxometalates (POMs), bulk pure metal oxides, bulk mixed oxides and mixed oxide solid solutions). The molecular structural and reactivity determinations of metal oxide catalytic active sites are greatly facilitated by the use of isotopically labeled molecules. The ability of Raman spectroscopy to (1) operate in all phases (liquid, solid, gas and their mixtures), (2) operate over a very wide temperature (-273 to >1000 °C) and pressure (UHV to ≫100 atm) range, and (3) provide molecular level information about metal oxides makes Raman spectroscopy the most informative characterization technique for understanding the molecular structure and surface chemistry of the catalytic active sites present in metal oxide heterogeneous catalysts. The recent use of hyphenated Raman spectroscopy instrumentation (e.g., Raman-IR, Raman-UV-vis, Raman-EPR) and the operando Raman spectroscopy methodology (e.g., Raman-MS and Raman-GC) is allowing for the establishment of direct structure-activity/selectivity relationships that will have a significant impact on catalysis science in this decade. Consequently, this critical review will show the growth in the use of Raman spectroscopy in heterogeneous catalysis research, for metal oxides as well as metals, is poised to continue to exponentially grow in the coming years (173 references).

16.
Chem Sci ; 12(42): 14143-14158, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760199

RESUMO

The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C-H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnO x surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.

17.
J Am Chem Soc ; 132(36): 12559-61, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20731392

RESUMO

Recent debates over the active site structure of supported vanadia/silica catalysts have suggested the existence of a surface vanadium peroxo-oxo "umbrella" structure. This study definitively demonstrates with Raman and UV-vis spectroscopy that the surface vanadia peroxo-oxo umbrella-like structure is not present for both hydrated and dehydrated supported vanadia catalysts such as supported vanadia on silica. The vanadia peroxo-oxo umbrella structure, however, is present in vanadium haloperoxidase (VHPOs) enzymes and metal-organic compounds designed to mimic VHPOs.


Assuntos
Compostos de Vanádio/química , Catálise , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Dióxido de Silício/química , Propriedades de Superfície
18.
J Am Chem Soc ; 132(38): 13462-71, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20815386

RESUMO

Zirconia-supported tungsten oxide (WO(x)/ZrO(2)) is considered an important supported metal oxide model acid catalyst, for which structure-property relationships have been studied for numerous acid-catalyzed reactions. The catalytic activity for xylene isomerization, alcohol dehydration, and aromatic acylation follows a volcano-shape dependence on tungsten surface density. However, WO(x)/ZrO(2) has not been studied for more acid-demanding reactions, like n-pentane isomerization, with regard to surface density dependence. In this work, WO(x)/ZrO(2) was synthesized using commercially available amorphous ZrO(x)(OH)(4-2x) and model crystalline ZrO(2) as support precursors. They were analyzed for n-pentane isomerization activity and selectivity as a function of tungsten surface density, catalyst support type, and calcination temperature. Amorphous ZrO(x)(OH)(4-2x) led to WO(x)/ZrO(2) (WZrOH) that exhibited maximum isomerization activity at ∼5.2 W·nm(-2), and the crystalline ZrO(2) led to a material (WZrO(2)) nearly inactive at all surface densities. Increasing the calcination temperature from 773 to 973 K increased the formation of 0.8-1 nm Zr-WO(x) clusters detected through direct imaging on an aberration-corrected high-resolution scanning transmission electron microscope (STEM). Calcination temperature further increased catalytic activity by at least two times. Brønsted acidity was not affected but Lewis acidity decreased in number, as quantified via pyridine adsorption infrared spectroscopy. WO(x)/ZrO(2) exhibited isomerization activity that peaked within the first 2 h time-on-stream, which may be due to Zr-WO(x) clusters undergoing an activation process.

19.
J Am Chem Soc ; 131(42): 15544-54, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19807071

RESUMO

The molecular structures and surface chemistry of mixed metal oxide heteropolyoxo vanadium tungstate (H(3+x)PW(12-x)V(x)O(40) with x = 0, 1, 2, and 3) Keggin nanoparticles (NPs), where vanadium is incorporated into the primary Keggin structure, and supported VO(x) on tungstophosphoric acid (TPA, H(3)PW(12)O(40)), where vanadium is present on the surface of the Keggin unit, were investigated with solid-state magic angle spinning (51)V NMR, FT-IR, in situ Raman, in situ UV-vis, CH(3)OH temperature-programmed surface reaction (TPSR), and steady-state methanol oxidation. The incorporated VO(x) unit possesses one terminal V horizontal lineO bond, four bridging V-O-W/V bonds, and one long V-O-P bond in the primary Keggin structure, and the supported VO(x) unit possesses a similar coordination in the secondary structure under ambient conditions. The specific redox reaction rate for VO(x) in the Keggin primary structure is comparable to that of bulk V(2)O(5) and the more active supported vanadium oxide catalysts. The specific acidic reaction rate for the WO(x) in the TPA Keggin, however, is orders of magnitude greater than found for bulk WO(3), supported tungsten oxide catalysts, and even the highly acidic WO(3)-ZrO(2) catalyst synthesized by coprecipitation of ammonium metatungstate and ZrO(OH)(2). From CH(3)OH-TPSR and in situ Raman spectroscopy it was found that incorporation of vanadium oxide into the primary Keggin structure is also accompanied by the formation of surface VO(x) species at secondary sites on the Keggin outer surface. Both CH(3)OH-TPSR and steady-state methanol oxidation studies demonstrated that the surface VO(x) species on the Keggin outer surface are significantly less active than the VO(x) species incorporated into the primary Keggin structure. The presence of the less active surface VO(x) sites in the Keggins, thus, decreases the specific reaction rates for both methanol oxidation and methanol dehydration. During methanol oxidation/dehydration (O(2)/CH(3)OH = 2.17, T = 225 degrees C), in situ UV-vis diffuse reflectance spectroscopy revealed that vanadium oxide is primarily present as the V(+5) cation, which reflects the Mars-van Krevelen redox mechanism and rapid reoxidation by molecular O(2). The bulk TPA Keggin structure becomes more disordered and less thermally stable as the vanadium content increases. Although surface polyaromatic carbon forms during methanol oxidation on the Keggin surfaces, its influence on the reaction kinetics seems minimal as the carbon content diminishes as the vanadium oxide content increases and the reaction temperature is raised. No relationships were found between the electronic structure (UV-vis E(g) values) and TOF(redox) and TOF(acid) (TOF = turnover frequency) kinetics, which reflect the complexity of H(3+x)PW(12-x)V(x)O(40) Keggins. The overall catalytic performance of the H(3+x)PW(12-x)V(x)O(40) Keggin materials results from a complex interplay among the presence of redox vanadium (as secondary surface VO(x) species and substituted VO(x) sites in the primary Keggin NP structure), structural disorder of the Keggin NPs, exposed surface acid and redox sites, and coke deposition. These new insights reveal that the Keggin heteropolyoxometallates are much more complex than originally thought and that care must be taken in using Keggins as model mixed metal oxide NPs in catalytic kinetic and theoretical studies because their surface and bulk structures are dynamic under the reaction conditions.

20.
J Am Chem Soc ; 131(2): 680-7, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19102648

RESUMO

A series of supported 1-60% TiO(2)/SiO(2) catalysts were synthesized and subsequently used to anchor surface VO(x) redox and surface WO(x) acid sites. The supported TiO(x), VO(x), and WO(x) phases were physically characterized with TEM, in situ Raman and UV-vis spectroscopy, and chemically probed with in situ CH(3)OH-IR, CH(3)OH-TPSR and steady-state CH(3)OH dehydration. The CH(3)OH chemical probe studies revealed that the surface VO(x) sites are redox in nature and the surface WO(x) sites contain acidic character. The specific catalytic activity of surface redox (VO(4)) and acidic (WO(5)) sites coordinated to the titania nanoligands are extremely sensitive to the degree of electron delocalization of the titania nanoligands. With decreasing titania domain size, <10 nm, acidic activity increases and redox activity decreases due to their inverse electronic requirements. This is the first systematic study to demonstrate the ability of oxide nanoligands to tune the electronic structure and reactivity of surface metal oxide catalytic active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA