Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(3): 823-836, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806183

RESUMO

Deep rooting winter wheat genotypes can reduce nitrate leaching losses and increase N uptake. We aimed to investigate which deep root traits are correlated to deep N uptake and to estimate genetic variation in root traits and deep 15 N tracer uptake. In 2 years, winter wheat genotypes were grown in RadiMax, a semifield root-screening facility. Minirhizotron root imaging was performed three times during the main growing season. At anthesis, 15 N was injected via subsurface drip irrigation at 1.8 m depth. Mature ears from above the injection area were analysed for 15 N content. From minirhizotron image-based root length data, 82 traits were constructed, describing root depth, density, distribution and growth aspects. Their ability to predict 15 N uptake was analysed with the least absolute shrinkage and selection operator (LASSO) regression. Root traits predicted 24% and 14% of tracer uptake variation in 2 years. Both root traits and genotype showed significant effects on tracer uptake. In 2018, genotype and the three LASSO-selected root traits predicted 41% of the variation in tracer uptake, in 2019 genotype and one root trait predicted 48%. In both years, one root trait significantly mediated the genotype effect on tracer uptake. Deep root traits from minirhizotron images can predict deep N uptake, indicating the potential to breed deep-N-uptake-genotypes.


Assuntos
Nitratos , Raízes de Plantas , Genótipo , Fenótipo , Raízes de Plantas/genética , Triticum/genética
3.
Sci Total Environ ; 929: 172559, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641110

RESUMO

No-till and mulching are typical management operations in conservation agriculture (CA). To model pesticide degradation and leaching under a CA scenario, as compared to a conventional-tillage scenario (CT), the mulch module of the agro-hydrological model Daisy was extended. A Daisy soil column was parameterized with measurements of topsoil, mulch, and a realistic subsoil, and tested against published experimental data of pesticide fate in laboratory soil columns covered by mulch. Uncertainty and sensitivity analyses of the new Daisy version were conducted for a series of weather, soil, pesticide, and mulch parameters, using 4939 Monte Carlo simulations under each scenario. Results showed that there was no systematic difference in pesticide leaching from the topsoil (to the subsoil and directly to drains via drain-connected biopores) between CA and CT, but pesticide degradation and sorption were significantly different; degradation in the mulch and uppermost soil surface layer (0-3.5 cm) was larger in CA while degradation was larger in CT when considering the whole topsoil (0-30 cm). This difference for the whole topsoil could be explained by pesticide interception in CA in the part of the mulch not in direct contact with the soil where degradation is assumed not to occur. The sensitivity analysis highlighted non-influential parameters and seven parameters out of twenty-five to be better estimated to improve the accuracy of the predictions.

4.
Trends Plant Sci ; 28(9): 991-994, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365048

RESUMO

Including more grain legumes in cropping systems is considered a climate-smart solution to increase sustainability, soil fertility, and cropping systems diversification, while reducing nitrogen (N) inputs. However, increasing pulse production in temperate areas for food and feed comes with challenges that should be addressed and require more research for successful implementation.


Assuntos
Fabaceae , Grão Comestível , Solo , Verduras , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA