Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(52): 13330-13335, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530680

RESUMO

New geochemical data from the Malawi Rift (Chiwondo Beds, Karonga Basin) fill a major spatial gap in our knowledge of hominin adaptations on a continental scale. Oxygen (δ18O), carbon (δ13C), and clumped (Δ47) isotope data on paleosols, hominins, and selected fauna elucidate an unexpected diversity in the Pleistocene hominin diet in the various habitats of the East African Rift System (EARS). Food sources of early Homo and Paranthropus thriving in relatively cool and wet wooded savanna ecosystems along the western shore of paleolake Malawi contained a large fraction of C3 plant material. Complementary water consumption reconstructions suggest that ca. 2.4 Ma, early Homo (Homo rudolfensis) and Paranthropus (Paranthropus boisei) remained rather stationary near freshwater sources along the lake margins. Time-equivalent Paranthropus aethiopicus from the Eastern Rift further north in the EARS consumed a higher fraction of C4 resources, an adaptation that grew more pronounced with increasing openness of the savanna setting after 2 Ma, while Homo maintained a high versatility. However, southern African Paranthropus robustus had, similar to the Malawi Rift individuals, C3-dominated feeding strategies throughout the Early Pleistocene. Collectively, the stable isotope and faunal data presented here document that early Homo and Paranthropus were dietary opportunists and able to cope with a wide range of paleohabitats, which clearly demonstrates their high behavioral flexibility in the African Early Pleistocene.


Assuntos
Dieta/história , Hominidae/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Isótopos de Carbono/análise , Esmalte Dentário/química , Ecossistema , Meio Ambiente , Comportamento Alimentar , Fósseis , História Antiga
2.
Rapid Commun Mass Spectrom ; 27(14): 1631-42, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23765611

RESUMO

RATIONALE: The kinetic nature of the phosphoric acid digestion reaction enables clumped isotope analysis of carbonates using gas source isotope ratio mass spectrometry (IRMS). In most laboratories acid digestions are performed at 25°C in sealed vessels or at 90°C in a common acid bath. Here we show that different Δ47 results are obtained depending on the digestion technique employed. METHODS: Several replicates of a biogenic aragonite and NBS 19 were reacted with 104% H3 PO4 in sealed vessels at 25°C and at 90°C using a common acid bath. The sample size varied between 4 mg and 14 mg. Purification methods that are standard for clumped isotope analyses were applied to the evolved CO2 before measuring the abundances of masses 44 to 49 relative to a reference gas by IRMS. RESULTS: A systematic trend to lower and more consistent Δ47 values is observed for reactions at 25°C if the sample size is increased. We suggest that secondary re-equilibration of evolved CO2 or reaction intermediates with free water molecules preferentially occurs for relatively small samples (4-7 mg), finally yielding elevated Δ47 values compared with >7 mg aliquots. In contrast, no such sample size effect on Δ47 values is observed for carbonates that are digested at 90°C using the common acid bath. CONCLUSIONS: The determination of Δ47 values of carbonate samples smaller than 7 mg becomes more precise and accurate if digestions are performed at 90°C. Based on our results we propose that the difference in phosphoric acid fractionation factor between 25°C and 90°C is 0.07‰ for both calcite and aragonite.

3.
Rapid Commun Mass Spectrom ; 27(5): 603-12, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23413219

RESUMO

RATIONALE: The measurement of the abundances of minor isotopologues by mass spectrometry requires correction of subtle non-linearities in the mass spectrometer that cause deviations in the relationship between actual and measured isotope ratios. Here we show that negative backgrounds on the Faraday cups recording the minor ion beams are the cause of the observed non-linearities in the measurement of CO(2) isotopologues, and propose a new correction procedure for clumped isotope measurements. METHODS: We carefully investigated the cause of non-linearity effects in the measurement of the abundance of (13)C(18)O(16)O, a minor isotopologue of CO(2) with m/z 47, on two different mass spectrometers. By using gases of different composition with close to stochastic and with non-random distribution of isotopes we demonstrate that the apparent dependence of the excess abundance of the isotopologue of m/z 47 on the bulk isotopic composition of CO(2) is due to a background interference that is linearly dependent on the partial pressure of the gas in the source of the mass spectrometer. CONCLUSIONS: Background determination with gas flowing into the source of the mass spectrometer is necessary for accurate clumped isotope measurements of CO(2). Background corrections can be performed accurately if the slit width of the m/z 44 Faraday cup significantly exceeds that of the one for m/z 47, using a correlation between m/z 44 signal intensity and the corresponding minimum in m/z 47 background. We propose two new correction schemes that reduce the time-consuming measurement of gases of different bulk isotopic compositions. These findings may also be relevant for the measurement of other rare isotopologues by mass spectrometry.

4.
Isotopes Environ Health Stud ; 52(1-2): 12-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25685933

RESUMO

It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The proposed correction scheme can be easily applied if the slit width of the m/z 49 Faraday cup is bigger than that of the m/z 47 cup.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Carbonatos/análise , Espectrometria de Massas/métodos , Oxigênio/análise , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA