Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Cancer ; 126(11): 1616-1626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35031765

RESUMO

BACKGROUND: Solid tumour perfusion can be unstable, creating transiently hypoxic cells that can contribute to radiation resistance. We investigated the in vivo lifetime of transiently hypoxic tumour cells and chronically hypoxic tumour cells during tumour growth and following irradiation. METHODS: Hypoxic cells in SiHa and WiDr human tumour xenografts were labelled using pimonidazole and EF5, and turnover was quantified as the loss of labelled cells over time. The perfusion-modifying drug pentoxifylline was used to reoxygenate transiently hypoxic cells prior to hypoxia marker administration or irradiation. RESULTS: Chronically hypoxic cells constantly turnover in SiHa and WiDr tumours, with half-lives ranging from 42-82 h and significant numbers surviving >96 h. Transiently hypoxic cells constitute 26% of the total hypoxic cells in WiDr tumours. These transiently hypoxic cells survive at least 24 h, but then rapidly turnover with a half-life of 34 h and are undetectable 72 h after labelling. Transiently hypoxic cells are radiation-resistant, although vascular dysfunction induced by 10 Gy of ionising radiation preferentially kills transiently hypoxic cells. CONCLUSIONS: Transiently hypoxic tumour cells survive up to 72 h in WiDr tumours and are radiation-resistant, although transiently hypoxic cells are sensitive to vascular dysfunction induced by high doses of ionising radiation.


Assuntos
Neoplasias , Tolerância a Radiação , Hipóxia Celular , Xenoenxertos , Humanos , Hipóxia , Neoplasias/radioterapia , Transplante Heterólogo
2.
Acta Oncol ; 60(11): 1489-1498, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34379579

RESUMO

BACKGROUND: A common feature of solid tumours that are resistant to therapy is the presence of regions with low oxygen content (i.e., hypoxia). Oxygen electrode studies suggest that localized prostate adenocarcinoma is commonly hypoxic, although conflicting data have been reported between immunohistochemical detection of hypoxia-induced proteins in biopsy specimens and positron emission tomography (PET) imaging of 18F-labeled hypoxia reporters. Although the 2-nitroimidazole 18F-EF5 is well-established to label hypoxic tumour cells in pre-clinical tumour models and clinical trials of multiple primary tumour sites, it has yet to be tested in prostate cancer. The purpose of this study was to evaluate the feasibility of using 18F-EF5 to detect hypoxia in clinical prostate tumours. MATERIAL AND METHODS: Patients with localized adenocarcinoma of the prostate were recruited for pre-treatment 18F-EF5 PET scans. Immunohistochemistry was conducted on diagnostic biopsies to assess the expression of glucose transporter 1 (GLUT1), osteopontin (OPN), and carbonic anhydrase IX (CAIX). Immunoreactivity scores of staining intensity and frequency were used to indicate the presence of tumour hypoxia. RESULTS: We found low tumour-to-muscle ratios of 18F-EF5 uptake that were not consistent with tumour hypoxia, causing early termination of the study. However, we observed GLUT1 and OPN expression in all prostate tumour biopsies, indicating the presence of hypoxia in all tumours. CONCLUSION: Our data do not support the use of 18F-EF5 PET to detect hypoxia in prostate adenocarcinoma, and suggest the use of immunohistochemistry to quantify expression of the hypoxia-inducible proteins GLUT1 and OPN as indications of prostate tumour hypoxia.


Assuntos
Adenocarcinoma , Próstata , Adenocarcinoma/diagnóstico por imagem , Hipóxia Celular , Humanos , Hipóxia , Masculino , Tomografia por Emissão de Pósitrons , Próstata/diagnóstico por imagem , Hipóxia Tumoral
3.
Cancers (Basel) ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927921

RESUMO

Cancers can manifest large variations in tumor phenotypes due to genetic and microenvironmental factors, which has motivated the development of quantitative radiomics-based image analysis with the aim to robustly classify tumor phenotypes in vivo. Positron emission tomography (PET) imaging can be particularly helpful in elucidating the metabolic profiles of tumors. However, the relatively low resolution, high noise, and limited PET data availability make it difficult to study the relationship between the microenvironment properties and metabolic tumor phenotype as seen on the images. Most of previously proposed digital PET phantoms of tumors are static, have an over-simplified morphology, and lack the link to cellular biology that ultimately governs the tumor evolution. In this work, we propose a novel method to investigate the relationship between microscopic tumor parameters and PET image characteristics based on the computational simulation of tumor growth. We use a hybrid, multiscale, stochastic mathematical model of cellular metabolism and proliferation to generate simulated cross-sections of tumors in vascularized normal tissue on a microscopic level. The generated longitudinal tumor growth sequences are converted to PET images with realistic resolution and noise. By changing the biological parameters of the model, such as the blood vessel density and conditions for necrosis, distinct tumor phenotypes can be obtained. The simulated cellular maps were compared to real histology slides of SiHa and WiDr xenografts imaged with Hoechst 33342 and pimonidazole. As an example application of the proposed method, we simulated six tumor phenotypes that contain various amounts of hypoxic and necrotic regions induced by a lack of oxygen and glucose, including phenotypes that are distinct on the microscopic level but visually similar in PET images. We computed 22 standardized Haralick texture features for each phenotype, and identified the features that could best discriminate the phenotypes with varying image noise levels. We demonstrated that "cluster shade" and "difference entropy" are the most effective and noise-resilient features for microscopic phenotype discrimination. Longitudinal analysis of the simulated tumor growth showed that radiomics analysis can be beneficial even in small lesions with a diameter of 3.5-4 resolution units, corresponding to 8.7-10.0 mm in modern PET scanners. Certain radiomics features were shown to change non-monotonically with tumor growth, which has implications for feature selection for tracking disease progression and therapy response.

4.
Elife ; 122024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226092

RESUMO

Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPß-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.


Assuntos
Fadiga Muscular , Animais , Camundongos , Músculo Esquelético/metabolismo , Retroalimentação Fisiológica , ADP-Ribosilação , Transaminases/metabolismo , Transaminases/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Hidroxibutiratos/metabolismo
5.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166103

RESUMO

Oxygenation levels are a determinative factor in T cell function. Here, we describe how oxygen tensions sensed by mouse and human T cells at the moment of activation act to persistently modulate both differentiation and function. We found that in a protocol of CAR-T cell generation, 24 hr of low oxygen levels during initial CD8+ T cell priming is sufficient to enhance antitumour cytotoxicity in a preclinical model. This is the case even when CAR-T cells are subsequently cultured under high oxygen tensions prior to adoptive transfer. Increased hypoxia-inducible transcription factor (HIF) expression was able to alter T cell fate in a similar manner to exposure to low oxygen tensions; however, only a controlled or temporary increase in HIF signalling was able to consistently improve cytotoxic function of T cells. These data show that oxygenation levels during and immediately after T cell activation play an essential role in regulating T cell function.


Assuntos
Linfócitos T CD8-Positivos , Oxigênio , Camundongos , Humanos , Animais , Oxigênio/metabolismo , Transdução de Sinais , Ativação Linfocitária , Transferência Adotiva
6.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605057

RESUMO

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Assuntos
Fenômenos Bioquímicos , Linfócitos T CD8-Positivos , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo
7.
Front Oncol ; 12: 841921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756626

RESUMO

Metastatic breast cancer is challenging to effectively treat, highlighting the need for an improved understanding of host factors that influence metastatic tumor cell colonization and growth in distant tissues. The lungs are a common site of breast cancer metastasis and are host to a population of tissue-resident eosinophils. Eosinophils are granulocytic innate immune cells known for their prominent roles in allergy and Th2 immunity. Though their presence in solid tumors and metastases have been reported for decades, the influence of eosinophils on metastatic tumor growth in the lungs is unclear. We used transgenic mouse models characterized by elevated pulmonary eosinophils (IL5Tg mice) and eosinophil-deficiency (ΔdblGATA mice), as well as antibody-mediated depletion of eosinophils, to study the role of eosinophils in EO771 mammary tumor growth in the lungs. We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. Eosinophils co-cultured with tumor cells ex vivo produced peroxidase activity and induced tumor cell death, indicating that eosinophils are capable of releasing eosinophil peroxidase (EPX) and killing EO771 tumor cells. We found that lung eosinophils expressed phenotypic markers of activation during EO771 tumor growth in the lungs, and that metastatic growth was accelerated in eosinophil-deficient mice and in WT mice after immunological depletion of eosinophils. Our results highlight an important role for eosinophils in restricting mammary tumor cell growth in the lungs and support further work to determine whether strategies to trigger local eosinophil degranulation may decrease pulmonary metastatic growth.

8.
Oncoimmunology ; 11(1): 2010905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481284

RESUMO

Current immunotherapies for lung cancer are only effective in a subset of patients. Identifying tumor-derived factors that facilitate immunosuppression offers the opportunity to develop novel strategies to supplement and improve current therapeutics. We sought to determine whether expression of driver oncogenes in lung cancer cells affects cytokine secretion, alters the local immune environment, and influences lung tumor progression. We demonstrate that oncogenic EGFR and KRAS mutations, which are early events in lung tumourigenesis, can drive cytokine and chemokine production by cancer cells. One of the most prominent changes was in CCL5, which was rapidly induced by KRASG12V or EGFRL858R expression, through MAPK activation. Immunocompetent mice implanted with syngeneic KRAS-mutant lung cancer cells deficient in CCL5 have decreased regulatory T cells (Tregs), evidence of T cell exhaustion, and reduced lung tumor burden, indicating tumor-cell CCL5 production contributes to an immune suppressive environment in the lungs. Furthermore, high CCL5 expression correlates with poor prognosis, immunosuppressive regulatory T cells, and alteration to CD8 effector function in lung adenocarcinoma patients. Our data support targeting CCL5 or CCL5 receptors on immune suppressive cells to prevent formation of an immune suppressive tumor microenvironment that promotes lung cancer progression and immunotherapy insensitivity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
9.
Mol Biol Cell ; 32(7): 567-578, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566639

RESUMO

The ability of cancer cells to invade surrounding tissues requires degradation of the extracellular matrix (ECM). Invasive structures, such as invadopodia, form on the plasma membranes of cancer cells and secrete ECM-degrading proteases that play crucial roles in cancer cell invasion. We have previously shown that the protein tyrosine phosphatase alpha (PTPα) regulates focal adhesion formation and migration of normal cells. Here we report a novel role for PTPα in promoting triple-negative breast cancer cell invasion in vitro and in vivo. We show that PTPα knockdown reduces ECM degradation and cellular invasion of MDA-MB-231 cells through Matrigel. PTPα is not a component of TKS5-positive structures resembling invadopodia; rather, PTPα localizes with endosomal structures positive for MMP14, caveolin-1, and early endosome antigen 1. Furthermore, PTPα regulates MMP14 localization to plasma membrane protrusions, suggesting a role for PTPα in intracellular trafficking of MMP14. Importantly, we show that orthotopic MDA-MB-231 tumors depleted in PTPα exhibit reduced invasion into the surrounding mammary fat pad. These findings suggest a novel role for PTPα in regulating the invasion of triple-negative breast cancer cells.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Movimento Celular/fisiologia , Matriz Extracelular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/fisiologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/fisiopatologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncoimmunology ; 10(1): 1959978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377597

RESUMO

Hypoxia develops in germinal centers (GCs) induced by model antigens; however, it is unknown whether tumor-reactive GCs are also hypoxic. We identified GC hypoxia in lymph nodes (LNs) draining murine mammary tumors and lethally irradiated tumor cells, and found that hypoxia is associated with the levels of antibody-secreting B cells. Hypoxic culture conditions impaired the proliferation of activated B cells, and inhibited class-switching to IgG1 and IgA immunoglobulin isotypes in vitro. To assess the role of the hypoxic response in tumor-reactive GCs in vivo, we deleted von Hippel-Lindau factor (VHL) in class-switched B cells and found decreased GC B cells in tumor-draining LNs, reduced class-switched and tumor-specific antibodies in the circulation, and modified phenotypes of tumor-infiltrating T cells and macrophages. We also detected the hypoxia marker carbonic anhydrase IX in the GCs of LNs from breast cancer patients, providing evidence that GC hypoxia develops in humans. We conclude that GC hypoxia develops in TDLNs, and that the hypoxic response negatively regulates tumor-induced humoral immune responses in preclinical models.


Assuntos
Neoplasias da Mama , Imunidade Humoral , Animais , Feminino , Centro Germinativo , Humanos , Hipóxia , Imunoglobulina G , Linfonodos , Camundongos
11.
Cancer Lett ; 493: 31-40, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32763272

RESUMO

Hypoxic tumour cells are radiation-resistant and are associated with poor therapeutic outcome. A poorly understood source of tumour hypoxia is unstable perfusion, which exposes tumour cells to varying oxygen tensions over time creating "transiently" hypoxic cells. Evidence suggests that angiotensin II type 1 receptor blockers (ARBs) can improve tumour perfusion by reducing collagen deposition from cancer associated fibroblasts (CAFs). However, the influence of ARBs on transient hypoxia and tumour radiation response is unknown. We tested how the ARBs losartan and telmisartan affected the solid tumour microenvironment, using fluorescent perfusion dyes and positron emission tomography to quantify tumour perfusion, and a combination of hypoxia markers and the hemorheological agent pentoxifylline to assess transient tumour hypoxia. We found CAF-containing tumours have reduced collagen I levels in response to telmisartan, but not losartan. Telmisartan significantly increased tumour blood flow, stabilized microregional tumour perfusion, and decreased tumour hypoxia by reducing the development of transient hypoxia. Telmisartan-treated tumours were more responsive to radiation, indicating that telmisartan reduces a therapeutically important population of transiently hypoxic tumour cells. Our findings indicate telmisartan is capable of modifying the tumour microenvironment to stabilize tumour perfusion, reduce transient hypoxia, and improve tumour radiation response.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Neoplasias/terapia , Radiossensibilizantes/administração & dosagem , Telmisartan/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Corantes Fluorescentes/administração & dosagem , Humanos , Losartan/administração & dosagem , Losartan/farmacologia , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Pentoxifilina/administração & dosagem , Tomografia por Emissão de Pósitrons , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Radioterapia , Telmisartan/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Alzheimers Res Ther ; 11(1): 44, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31084613

RESUMO

BACKGROUND: Alzheimer's disease (AD) is defined by amyloid beta (Aß) plaques and neurofibrillary tangles and characterized by neurodegeneration and memory loss. The majority of AD patients also have Aß deposition in cerebral vessels known as cerebral amyloid angiopathy (CAA), microhemorrhages, and vascular co-morbidities, suggesting that cerebrovascular dysfunction contributes to AD etiology. Promoting cerebrovascular resilience may therefore be a promising therapeutic or preventative strategy for AD. Plasma high-density lipoproteins (HDL) have several vasoprotective functions and are associated with reduced AD risk in some epidemiological studies and with reduced Aß deposition and Aß-induced inflammation in 3D engineered human cerebral vessels. In mice, deficiency of apoA-I, the primary protein component of HDL, increases CAA and cognitive dysfunction, whereas overexpression of apoA-I from its native promoter in liver and intestine has the opposite effect and lessens neuroinflammation. Similarly, acute peripheral administration of HDL reduces soluble Aß pools in the brain and some studies have observed reduced CAA as well. Here, we expand upon the known effects of plasma HDL in mouse models and in vitro 3D artery models to investigate the interaction of amyloid, astrocytes, and HDL on the cerebrovasculature in APP/PS1 mice. METHODS: APP/PS1 mice deficient or hemizygous for Apoa1 were aged to 12 months. Plasma lipids, amyloid plaque deposition, Aß protein levels, protein and mRNA markers of neuroinflammation, and astrogliosis were assessed using ELISA, qRT-PCR, and immunofluorescence. Contextual and cued fear conditioning were used to assess behavior. RESULTS: In APP/PS1 mice, complete apoA-I deficiency increased total and vascular Aß deposition in the cortex but not the hippocampus compared to APP/PS1 littermate controls hemizygous for apoA-I. Markers of both general and vascular neuroinflammation, including Il1b mRNA, ICAM-1 protein, PDGFRß protein, and GFAP protein, were elevated in apoA-I-deficient APP/PS1 mice. Additionally, apoA-I-deficient APP/PS1 mice had elevated levels of vascular-associated ICAM-1 in the cortex and hippocampus and vascular-associated GFAP in the cortex. A striking observation was that astrocytes associated with cerebral vessels laden with Aß or associated with Aß plaques showed increased reactivity in APP/PS1 mice lacking apoA-I. No behavioral changes were observed. CONCLUSIONS: ApoA-I-containing HDL can reduce amyloid pathology and astrocyte reactivity to parenchymal and vascular amyloid in APP/PS1 mice.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Apolipoproteína A-I/genética , Angiopatia Amiloide Cerebral/sangue , Angiopatia Amiloide Cerebral/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Angiopatia Amiloide Cerebral/genética , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Feminino , Gliose/metabolismo , Hipocampo/patologia , Lipoproteínas HDL/sangue , Masculino , Camundongos Transgênicos , Placa Amiloide/metabolismo
13.
Sci Rep ; 8(1): 152, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317756

RESUMO

Hypoxia promotes tumour aggressiveness and reduces patient survival. A spectrum of poor outcome among patients with hypoxic tumours suggests that additional factors modulate how tumours respond to hypoxia. PIWI-interacting RNAs (piRNAs) are small non-coding RNAs with a pivotal role in genomic stability and epigenetic regulation of gene expression. We reported that cancer type-specific piRNA signatures vary among patients. However, remarkably homogenous piRNA profiles are detected across patients with renal cell carcinoma, a cancer characterized by constitutive upregulation of hypoxia-related signaling induced by common mutation or loss of von Hippel-Lindau factor (VHL). By investigating >3000 piRNA transcriptomes in hypoxic and non-hypoxic tumors from seven organs, we discovered 40 hypoxia-regulated piRNAs and validated this in cells cultured under hypoxia. Moreover, a subset of these hypoxia-regulated piRNAs are regulated by VHL/HIF signaling in vitro. A hypoxia-regulated piRNA-based score (PiSco) was associated with poor RFS for hypoxic tumours, particularly Stage I lung adenocarcinomas, suggesting that hypoxia-regulated piRNA expression can predict tumour recurrence even in early-stage tumours and thus may be of clinical utility.


Assuntos
Hipóxia/genética , Neoplasias/genética , Neoplasias/mortalidade , RNA não Traduzido/genética , Biomarcadores , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipóxia/metabolismo , Recidiva Local de Neoplasia , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Interferência de RNA , Reprodutibilidade dos Testes , Projetos de Pesquisa , Proteína Supressora de Tumor Von Hippel-Lindau/genética
14.
J Nucl Med ; 58(5): 815-820, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126891

RESUMO

Solid tumor perfusion is a proven variable of interest for predicting cancer aggression and response to therapy. Current methods for noninvasively imaging tumor perfusion with PET are limited by restricted accessibility and short half-lives of perfusion radiotracers. This study presents 2-18F-fluoroethanol (2-18F-FEtOH) as a perfusion reporter that can distinguish between tumors of varying perfusion levels and can be applied to screening drugs that modify tumor perfusion. Methods: Uptake of 2-18F-FEtOH in 4T1 and 67NR murine mammary carcinoma tumors grown in mice was measured using ex vivo radiography as well as static and dynamic PET imaging. 2-18F-FEtOH uptake was directly compared with the 14C-iodoantipyrine perfusion reporter, and the perfusion-modifying drugs nicotinamide, pentoxifylline, and hydralazine were used to manipulate tumor perfusion before 2-18F-FEtOH quantification. Results: Uptake of 2-18F-FEtOH in 4T1 and 67NR tumors was consistent with known perfusion differences within and between these tumors. 2-18F-FEtOH uptake corresponded well with 14C-iodoantipyrine and reflected the tumor perfusion-modifying effects of each drug. Conclusion: 2-18F-FEtOH is a novel 18F-based radiotracer for investigating tumor perfusion with PET imaging. Quantification of 2-18F-FEtOH uptake can be used to distinguish between tumors of varying perfusion and to screen the efficacy of blood flow-modifying drugs for use as adjuvants to existing cancer therapies.


Assuntos
Etanol/análogos & derivados , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Diagnóstico Diferencial , Etanol/farmacocinética , Feminino , Neoplasias Mamárias Experimentais/complicações , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias , Neovascularização Patológica/etiologia , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
15.
Dis Model Mech ; 8(8): 999-1009, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035394

RESUMO

Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (Pln(OE)), a well-known inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in Pln(OE) muscles, with marked reductions in rates of Ca(2+) uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca(2+). However, our most significant discovery was that the soleus and gluteus minimus muscles from the Pln(OE) mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca(2+)-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available Pln(OE) mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Adolescente , Adulto , Animais , Cálcio/farmacologia , Dinamina II/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Músculos/enzimologia , Músculos/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Distrofia Muscular Animal/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteólise/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA