Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Immunity ; 51(1): 185-197.e6, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31278058

RESUMO

Innate lymphoid cells (ILCs) promote tissue homeostasis and immune defense but also contribute to inflammatory diseases. ILCs exhibit phenotypic and functional plasticity in response to environmental stimuli, yet the transcriptional regulatory networks (TRNs) that control ILC function are largely unknown. Here, we integrate gene expression and chromatin accessibility data to infer regulatory interactions between transcription factors (TFs) and genes within intestinal type 1, 2, and 3 ILC subsets. We predicted the "core" TFs driving ILC identities, organized TFs into cooperative modules controlling distinct gene programs, and validated roles for c-MAF and BCL6 as regulators affecting type 1 and type 3 ILC lineages. The ILC network revealed alternative-lineage-gene repression, a mechanism that may contribute to reported plasticity between ILC subsets. By connecting TFs to genes, the TRNs suggest means to selectively regulate ILC effector functions, while our network approach is broadly applicable to identifying regulators in other in vivo cell populations.


Assuntos
Intestinos/fisiologia , Subpopulações de Linfócitos/fisiologia , Linfócitos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Montagem e Desmontagem da Cromatina , Repressão Epigenética , Redes Reguladoras de Genes , Imunidade Inata , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-maf/genética , Transcriptoma
2.
Immunol Cell Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009814

RESUMO

Chronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M. Mechanistically, type I interferon (IFN-I), predominantly IFNß, signals to thymic hematopoietic cells, strongly delaying T-cell development at the earliest precursor stage. Furthermore, IFN-I signaling to the nonhematopoietic compartment provides a second signal essential to favor B-cell differentiation and maturation within the thymus. Importantly, chronic infection yields changes in the B-cell population for at least 50 days following infection, long after thymic atrophy has subsided. Thus, the inflammatory milieu induced by chronic viral infection has a profound, and long-lasting, effect on thymic composition leading to the generation of a novel population of thymic B cells.

4.
Nat Immunol ; 11(5): 395-402, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20351692

RESUMO

Inflammasomes regulate the activity of caspase-1 and the maturation of interleukin 1beta (IL-1beta) and IL-18. AIM2 has been shown to bind DNA and engage the caspase-1-activating adaptor protein ASC to form a caspase-1-activating inflammasome. Using Aim2-deficient mice, we identify a central role for AIM2 in regulating caspase-1-dependent maturation of IL-1beta and IL-18, as well as pyroptosis, in response to synthetic double-stranded DNA. AIM2 was essential for inflammasome activation in response to Francisella tularensis, vaccinia virus and mouse cytomegalovirus and had a partial role in the sensing of Listeria monocytogenes. Moreover, production of IL-18 and natural killer cell-dependent production of interferon-gamma, events critical in the early control of virus replication, were dependent on AIM2 during mouse cytomegalovirus infection in vivo. Collectively, our observations demonstrate the importance of AIM2 in the sensing of both bacterial and viral pathogens and in triggering innate immunity.


Assuntos
Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Francisella tularensis/imunologia , Células Matadoras Naturais/metabolismo , Listeriose/imunologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Tularemia/imunologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Proteínas do Citoesqueleto/genética , DNA/imunologia , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/metabolismo , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/patogenicidade , Proteínas de Ligação a DNA , Francisella tularensis/patogenicidade , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Listeriose/genética , Listeriose/metabolismo , Ativação Linfocitária/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Tularemia/genética , Tularemia/metabolismo , Carga Viral/genética , Carga Viral/imunologia
5.
Cytotherapy ; 23(1): 37-45, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092988

RESUMO

BACKGROUND AIMS: Certain therapies (e.g., daclizumab) that promote expansion of natural killer (NK) cells are associated with clinical amelioration of disease in the context of multiple sclerosis and associated mouse models. The clinical benefits are putatively attributable to an enhanced capacity of NK cells to kill activated pathogenic T cells. Whether a parallel approach will also be effective in systemic lupus erythematosus (lupus), a multi-organ autoimmune disease driven by aberrant responses of self-reactive T and B cells, is unclear. METHODS: In the present study, the authors assess the therapeutic impact of IL-2- and IL-15-based strategies for expanding NK cells on measures of lupus-like disease in a mouse model. RESULTS: Unexpectedly, cytokine-mediated expansion of cytotoxic lymphocytes aggravated immunological measures of lupus-like disease. Depletion studies revealed that the negative effects of these cytokine-based regimens can largely be attributed to expansion of CD8 T cells rather than NK cells. CONCLUSIONS: These results provoke caution in the use of cytokine-based therapeutics to treat co-morbid cancers in patients with lupus and highlight the need for new methods to selectively expand NK cells to further assess their clinical value in autoimmune disease.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunomodulação , Interleucina-15/farmacologia , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Masculino , Camundongos
6.
Curr Allergy Asthma Rep ; 20(1): 2, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925560

RESUMO

PURPOSE OF REVIEW: This review is focused on the existing evidence for circadian control of innate and adaptive immune responses to provide a framework for evaluating the contributions of diurnal rhythms to control of infections and pathogenesis of disease. RECENT FINDINGS: Circadian rhythms driven by cell-autonomous biological clocks are central to innate and adaptive immune responses against microbial pathogens. Research during the past few years has uncovered circadian circuits governing leukocyte migration between tissues, the magnitude of mucosal inflammation, the types of cytokines produced, and the severity of immune diseases. Other studies revealed how disruption of the circadian clock impairs immune function or how microbial products alter clock machinery. Revelations concerning the widespread impact of the circadian clock on immunity and homeostasis highlight how the timing of inflammatory challenges can dictate pathological outcomes and how the timing of therapeutic interventions likely determines clinical efficacy. An improved understanding of circadian circuits controlling immune function will facilitate advances in circadian immunotherapy.


Assuntos
Ritmo Circadiano/fisiologia , Imunidade/fisiologia , Animais , Relógios Circadianos/fisiologia , Citocinas/metabolismo , Homeostase , Humanos
7.
Trends Immunol ; 36(9): 536-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26272882

RESUMO

Coordination of the innate and adaptive immune systems is paramount to the development of protective humoral and cellular immunity following vaccination. Natural killer (NK) cells are front-line soldiers of the innate immune system, and recent studies have revealed functions for NK cells in long-lived immune memory and the regulation of adaptive immune responses. These findings suggest that NK cells may play important roles in the development of efficacious vaccines, as well as, in some contexts, failed immunizations. Here, we review the current understanding of the immunomodulatory and memory differentiation capabilities of NK cells. We examine the context dependency of the mechanisms and the nature of NK cell-mediated modulation of the immune response, and discuss how these insights may impact immunization strategies and the development of next-generation vaccines.


Assuntos
Imunomodulação , Células Matadoras Naturais/imunologia , Vacinas/imunologia , Animais , Apresentação de Antígeno/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Comunicação Celular , Movimento Celular/imunologia , Humanos , Imunidade Inata , Imunização Secundária , Memória Imunológica , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação
8.
Nature ; 481(7381): 394-8, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101430

RESUMO

Antiviral T cells are thought to regulate whether hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections result in viral control, asymptomatic persistence or severe disease, although the reasons for these different outcomes remain unclear. Recent genetic evidence, however, has indicated a correlation between certain natural killer (NK)-cell receptors and progression of both HIV and HCV infection, implying that NK cells have a role in these T-cell-associated diseases. Although direct NK-cell-mediated lysis of virus-infected cells may contribute to antiviral defence during some virus infections--especially murine cytomegalovirus (MCMV) infections in mice and perhaps HIV in humans--NK cells have also been suspected of having immunoregulatory functions. For instance, NK cells may indirectly regulate T-cell responses by lysing MCMV-infected antigen-presenting cells. In contrast to MCMV, lymphocytic choriomeningitis virus (LCMV) infection in mice seems to be resistant to any direct antiviral effects of NK cells. Here we examine the roles of NK cells in regulating T-cell-dependent viral persistence and immunopathology in mice infected with LCMV, an established model for HIV and HCV infections in humans. We describe a three-way interaction, whereby activated NK cells cytolytically eliminate activated CD4 T cells that affect CD8 T-cell function and exhaustion. At high virus doses, NK cells prevented fatal pathology while enabling T-cell exhaustion and viral persistence, but at medium doses NK cells paradoxically facilitated lethal T-cell-mediated pathology. Thus, NK cells can act as rheostats, regulating CD4 T-cell-mediated support for the antiviral CD8 T cells that control viral pathogenesis and persistence.


Assuntos
Células Matadoras Naturais/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Modelos Imunológicos , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Infecções por HIV/imunologia , Hepatite C/imunologia , Humanos , Interferon gama/imunologia , Células Matadoras Naturais/citologia , Contagem de Linfócitos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
9.
J Immunol ; 192(5): 2291-304, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24477914

RESUMO

The transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.


Assuntos
Quimiocina CCL8/imunologia , Regulação da Expressão Gênica/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Fatores de Transcrição/imunologia , Animais , Quimiocina CCL8/genética , Regulação da Expressão Gênica/genética , Listeriose/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/imunologia
10.
J Virol ; 88(4): 1953-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284324

RESUMO

Persistent viral infections are associated with host and viral factors that impair effective antiviral immunity. Natural killer (NK) cells contribute to establishment of persistent lymphocytic choriomeningitis virus (LCMV) infection in mice through suppression of virus-specific T cell responses during the first few days of infection, but NK cell depletion during those early time points can enable severe T cell-mediated immune pathology and death of the host. Here we show that long after their peak in cytolytic activation, NK cells continue to support viral persistence at later times of infection. Delayed depletion of NK cells, 2 to 3 weeks after infection, enhanced virus-specific T cell responses and viral control. This enhancing effect of delayed NK cell depletion on antiviral immunity, in contrast to early NK cell depletion, was not associated with increased morbidity and mortality, and mice quickly regained weight after treatment. The efficacy of the depletion depended in part upon the size of the original virus inoculum, the viral load at the time of depletion, and the presence of CD4 T cells. Each of these factors is an important contributor to the degree of CD8 T cell dysfunction during viral persistence. Thus, NK cells may continuously contribute to exhaustion of virus-specific T cells during chronic infection, possibly by depleting CD4 T cells. Targeting of NK cells could thus be considered in combination with blockade of other immunosuppressive pathways, such as the interleukin-10 (IL-10) and programmed death 1 (PD-1) pathways, as a therapy to cure chronic human infections, including those with HIV or hepatitis C virus. IMPORTANCE Persistent virus infections are a major threat to global human health. The capacity of viruses, including HIV and hepatitis C virus, to overwhelm or subvert host immune responses contributes to a prolonged state of dampened antiviral immune functionality, which in turn facilitates viral persistence. Recent efforts have focused on therapeutics that can restore the effector functions of these functionally exhausted virus-specific T cells in order to expedite viral clearance. Here we establish that natural killer (NK) cells actively contribute to immune dysfunction and viral persistence at later stages of infection. This previously undescribed mechanism of immune suppression during chronic infection provides a vital clue for the design of novel therapeutic strategies targeting NK cell immunosuppressive activity in order to restore immune function and enhance viral control in chronically infected individuals.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Depleção Linfocítica/métodos , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Fatores de Tempo , Carga Viral
11.
J Virol ; 88(18): 10748-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008915

RESUMO

UNLABELLED: Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are essential intracellular detectors of viral RNA. They contribute to the type I interferon (IFN) response that is crucial for host defense against viral infections. Given the potent antiviral and proinflammatory activities elicited by the type I IFNs, induction of the type I IFN response is tightly regulated. Members of the tripartite motif (TRIM) family of proteins have recently emerged as key regulators of antiviral immunity. We show that TRIM13, an E3 ubiquitin ligase, is expressed in immune cells and is upregulated in bone marrow-derived macrophages upon stimulation with inducers of type I IFN. TRIM13 interacts with MDA5 and negatively regulates MDA5-mediated type I IFN production in vitro, acting upstream of IFN regulatory factor 3. We generated Trim13(-/-) mice and show that upon lethal challenge with encephalomyocarditis virus (EMCV), which is sensed by MDA5, Trim13(-/-) mice produce increased amounts of type I IFNs and survive longer than wild-type mice. Trim13(-/-) murine embryonic fibroblasts (MEFs) challenged with EMCV or poly(I · C) also show a significant increase in beta IFN (IFN-ß) levels, but, in contrast, IFN-ß responses to the RIG-I-detected Sendai virus were diminished, suggesting that TRIM13 may play a role in positively regulating RIG-I function. Together, these results demonstrate that TRIM13 regulates the type I IFN response through inhibition of MDA5 activity and that it functions nonredundantly to modulate MDA5 during EMCV infection. IMPORTANCE: The type I interferon (IFN) response is crucial for host defense against viral infections, and proper regulation of this pathway contributes to maintaining immune homeostasis. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are intracellular detectors of viral RNA that induce the type I IFN response. In this study, we show that expression of the gene tripartite motif 13 (Trim13) is upregulated in response to inducers of type I IFN and that TRIM13 interacts with both MDA5 and RIG-I in vitro. Through the use of multiple in vitro and in vivo model systems, we show that TRIM13 is a negative regulator of MDA5-mediated type I IFN production and may also impact RIG-I-mediated type I IFN production by enhancing RIG-I activity. This places TRIM13 at a key junction within the viral response pathway and identifies it as one of the few known modulators of MDA5 activity.


Assuntos
Infecções por Cardiovirus/enzimologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Vírus da Encefalomiocardite/fisiologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/virologia , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/genética , Interferon beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética
12.
Crit Rev Immunol ; 34(5): 359-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25404045

RESUMO

Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory.


Assuntos
Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Viroses/imunologia , Imunidade Adaptativa , Animais , Comunicação Celular , Citocinas/metabolismo , Humanos , Imunidade Inata , Memória Imunológica , Imunomodulação , Células Matadoras Naturais/virologia , Linfócitos T/virologia
13.
Sci Immunol ; 9(92): eadd3085, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335270

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.


Assuntos
Asma , Dermatite Atópica , Hipersensibilidade Alimentar , Criança , Pré-Escolar , Humanos , Alérgenos , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Hipersensibilidade Alimentar/complicações , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK
14.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317967

RESUMO

Killer immunoglobulin-like receptors (KIRs) are polymorphic receptors for human leukocyte antigens (HLAs) that provide positive or negative signals controlling lymphocyte activation. Expression of inhibitory KIRs by CD8+ T cells affects their survival and function, which is linked to improved antiviral immunity and prevention of autoimmunity. In this issue of the JCI, Zhang, Yan, and co-authors demonstrate that increased numbers of functional inhibitory KIR-HLA pairs equating to greater negative regulation promoted longer lifespans of human T cells. This effect was independent of direct signals provided to KIR-expressing T cells and was instead driven by indirect mechanisms. Since the long-term maintenance of CD8+ T cells is critical for immune readiness against cancer and infection, this discovery has implications for immunotherapy and the preservation of immune function during aging.


Assuntos
Linfócitos T CD8-Positivos , Longevidade , Humanos , Envelhecimento , Antivirais , Autoimunidade
15.
Med ; 4(7): 398-400, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37453414

RESUMO

Chimeric antigen receptor (CAR)-based cellular therapies have achieved remarkable success against hematologic malignancies, but their application against solid tumors remains challenging. In this issue, Goulding et al.1 describe a unique CAR natural killer (NK) cell platform with pan-cancer activity via preservation and recognition of stress ligands on tumor cell membranes.


Assuntos
Neoplasias , Humanos , Ligantes , Neoplasias/terapia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Imunoterapia Adotiva , Membrana Celular/patologia
16.
Chronic Obstr Pulm Dis ; 10(3): 286-296, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37267601

RESUMO

Introduction: Chronic obstructive disease (COPD) risk factors, smoking, and chronic infection (cytomegalovirus [CMV]) may mold natural killer (NK) cell populations. What is not known is the magnitude of the effect CMV seropositivity imparts on populations of smokers with and at risk for COPD. We investigate the independent influence of CMV seropositivity on NK cell populations and differential effects when stratifying by COPD and degree of smoking history. Methods: Descriptive statistics determine the relationship between cytotoxic NK cell populations and demographic and clinical variables. Multivariable linear regression and predictive modeling were performed to determine associations between positive CMV serology and proportions of CD57+ and natural killer group 2C (NKG2C)+ NK cells. We dichotomized our analysis by those with a heavy smoking history and COPD and described the effect size of CMV seropositivity on NK cell populations. Results: When controlled for age, race, sex, pack-years smoked, body mass index, and lung function, CMV+ serostatus was independently associated with a higher proportion of CD57+, NKG2C+, and NKG2C+CD57+ NK cells. CMV+ serostatus was the sole predictor of larger NKG2C+ and CD57+NKG2C+ populations. Associations are more pronounced in those with COPD and heavy smokers. Conclusions: Among Veterans who are current and former smokers, CMV+ serostatus was independently associated with larger CD57+ and NKG2C+ populations, with a larger effect in heavy smokers and those with COPD, and was the sole predictor for increased expression of NKG2C+ and CD57+NKG2C+ populations. These findings may be broadened to include the assessment of longitudinal NK cell population change, accrued inflammatory potential, and further identification of pro-inflammatory NK cell population clusters.

17.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862204

RESUMO

Accumulation of activated natural killer (NK) cells in tissues during Ebola virus infection contributes to Ebola virus disease (EVD) pathogenesis. Yet, immunization with Ebola virus-like particles (VLPs) comprising glycoprotein and matrix protein VP40 provides rapid, NK cell-mediated protection against Ebola challenge. We used Ebola VLPs as the viral surrogates to elucidate the molecular mechanism by which Ebola virus triggers heightened NK cell activity. Incubation of human peripheral blood mononuclear cells with Ebola VLPs or VP40 protein led to increased expression of IFN-γ, TNF-α, granzyme B, and perforin by CD3-CD56+ NK cells, along with increases in degranulation and cytotoxic activity of these cells. Optimal activation required accessory cells like CD14+ myeloid and CD14- cells and triggered increased secretion of numerous inflammatory cytokines. VP40-induced IFN-γ and TNF-α secretion by NK cells was dependent on IL-12 and IL-18 and suppressed by IL-10. In contrast, their increased degranulation was dependent on IL-12 with little influence of IL-18 or IL-10. These results demonstrate that Ebola VP40 stimulates NK cell functions in an IL-12- and IL-18-dependent manner that involves CD14+ and CD14- accessory cells. These potentially novel findings may help in designing improved intervention strategies required to control viral transmission during Ebola outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-18 , Células Matadoras Naturais , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa/metabolismo
18.
Neuro Oncol ; 24(4): 584-597, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562087

RESUMO

BACKGROUND: Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment (TME) conveys distinct sensitivities to TAM targeting. METHODS: We generated syngeneic PDGFB- and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in TME cellular compositions and functions in PDGFB- and RAS-driven gliomas. RESULTS: We found that growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas TAMs in mesenchymal RAS-driven GBM were enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and changed the morphology of RAS-driven gliomas. CONCLUSIONS: Our work identifies functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of characterization of the microenvironment landscape in order to optimally stratify patients for TAM-targeted therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Microglia/patologia , Fosfatidilinositol 3-Quinases , Microambiente Tumoral , Macrófagos Associados a Tumor
19.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271506

RESUMO

The persistence of virally infected cells as reservoirs despite effective antiretroviral therapy is a major barrier to an HIV/SIV cure. These reservoirs are predominately contained within cells present in the B cell follicles (BCFs) of secondary lymphoid tissues, a site that is characteristically difficult for most cytolytic antiviral effector cells to penetrate. Here, we identified a population of NK cells in macaque lymph nodes that expressed BCF-homing receptor CXCR5 and accumulated within BCFs during chronic SHIV infection. These CXCR5+ follicular NK cells exhibited an activated phenotype coupled with heightened effector functions and a unique transcriptome characterized by elevated expression of cytolytic mediators (e.g., perforin and granzymes, LAMP-1). CXCR5+ NK cells exhibited high expression of FcγRIIa and FcγRIIIa, suggesting a potential for elevated antibody-dependent effector functionality. Consistently, accumulation of CXCR5+ NK cells showed a strong inverse association with plasma viral load and the frequency of germinal center follicular Th cells that comprise a significant fraction of the viral reservoir. Moreover, CXCR5+ NK cells showed increased expression of transcripts associated with IL-12 and IL-15 signaling compared with the CXCR5- subset. Indeed, in vitro treatment with IL-12 and IL-15 enhanced the proliferation of CXCR5+ granzyme B+ NK cells. Our findings suggest that follicular homing NK cells might be important in immune control of chronic SHIV infection, and this may have important implications for HIV cure strategies.


Assuntos
Infecções por HIV , Interleucina-15 , Humanos , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais , Linfonodos , Receptores CXCR5/metabolismo
20.
Front Immunol ; 12: 645850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815404

RESUMO

Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.


Assuntos
Citocinas/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Viroses/imunologia , Humanos , Interleucinas/farmacologia , Células Matadoras Naturais/imunologia , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA