Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acad Radiol ; 30(3): 412-420, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35644754

RESUMO

RATIONALE AND OBJECTIVES: To develop artificial intelligence (AI) system that assists in checking endotracheal tube (ETT) placement on chest X-rays (CXRs) and evaluate whether it can move into clinical validation as a quality improvement tool. MATERIALS AND METHODS: A retrospective data set including 2000 de-identified images from intensive care unit patients was split into 1488 for training and 512 for testing. AI was developed to automatically identify the ETT, trachea, and carina using semantically embedded neural networks that combine a declarative knowledge base with deep neural networks. To check the ETT tip placement, a "safe zone" was computed as the region inside the trachea and 3-7 cm above the carina. Two AI outputs were evaluated: (1) ETT overlay, (2) ETT misplacement alert messages. Clinically relevant performance metrics were compared against prespecified thresholds of >85% overlay accuracy and positive predictive value (PPV) > 30% and negative predictive value NPV > 95% for alerts to move into clinical validation. RESULTS: An ETT was present in 285 of 512 test cases. The AI detected 95% (271/285) of ETTs, 233 (86%) of these with accurate tip localization. The system (correctly) did not generate an ETT overlay in 221/227 CXRs where the tube was absent for an overall overlay accuracy of 89% (454/512). The alert messages indicating that either the ETT was misplaced or not detected had a PPV of 83% (265/320) and NPV of 98% (188/192). CONCLUSION: The chest X-ray AI met prespecified performance thresholds to move into clinical validation.


Assuntos
Inteligência Artificial , Intubação Intratraqueal , Humanos , Estudos Retrospectivos , Intubação Intratraqueal/métodos , Traqueia/diagnóstico por imagem , Redes Neurais de Computação
2.
Med Phys ; 48(6): 2906-2919, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706419

RESUMO

PURPOSE: Recent studies have demonstrated a lack of reproducibility of radiomic features in response to variations in CT parameters. In addition, reproducibility of radiomic features has not been well established in clinical datasets. We aimed to investigate the effects of a wide range of CT acquisition and reconstruction parameters on radiomic features in a realistic setting using clinical low dose lung cancer screening cases. We performed univariable and multivariable explorations to consider the effects of individual parameters and the simultaneous interactions between three different acquisition/reconstruction parameters of radiation dose level, reconstructed slice thickness, and kernel. METHOD: A cohort of 89 lung cancer screening patients were collected that each had a solid lung nodule >4mm diameter. A computational pipeline was used to perform a simulation of dose reduction of the raw projection data, collected from patient scans. This was followed by reconstruction of raw data with weighted filter back projection (wFBP) algorithm and automatic lung nodule detection and segmentation using a computer-aided detection tool. For each patient, 36 different image datasets were created corresponding to dose levels of 100%, 50%, 25%, and 10% of the original dose level, three slice thicknesses of 0.6 mm, 1 mm, and 2 mm, as well as three reconstruction kernels of smooth, medium, and sharp. For each nodule, 226 well-known radiomic features were calculated at each image condition. The reproducibility of radiomic features was first evaluated by measuring the intercondition agreement of the feature values among the 36 image conditions. Then in a series of univariable analyses, the impact of individual CT parameters was assessed by selecting subsets of conditions with one varying and two constant CT parameters. In each subset, intraparameter agreements were assessed. Overall concordance correlation coefficient (OCCC) served as the measure of agreement. An OCCC ≥ 0.9 implied strong agreement and reproducibility of radiomic features in intercondition or intraparameter comparisons. Furthermore, the interaction of CT parameters in impacting radiomic feature values was investigated via ANOVA. RESULTS: All included radiomic features lacked intercondition reproducibility (OCCC < 0.9) among all the 36 conditions. Out of 226 radiomic features analyzed, only 17 and 18 features were considered reproducible (OCCC ≥ 0.9) to dose and kernel variation, respectively, within the corresponding condition subsets. Slice thickness demonstrated the largest impact on radiomic feature values where only one to five features were reproducible at a few condition subsets. ANOVA revealed significant interactions (P < 0.05) between CT parameters affecting the variability of >50% of radiomic features. CONCLUSION: We systematically explored the multidimensional space of CT parameters in affecting lung nodule radiomic features. Univariable and multivariable analyses of this study not only showed the lack of reproducibility of the majority of radiomic features but also revealed existing interactions among CT parameters, meaning that the effect of individual CT parameters on radiomic features can be conditional upon other CT acquisition and reconstruction parameters. Our findings advise on careful radiomic feature selection and attention to the inclusion criteria for CT image acquisition protocols within the datasets of radiomic studies.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
3.
Med Phys ; 46(5): 2310-2322, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30677145

RESUMO

PURPOSE: With recent substantial improvements in modern computing, interest in quantitative imaging with CT has seen a dramatic increase. As a result, the need to both create and analyze large, high-quality datasets of clinical studies has increased as well. At present, no efficient, widely available method exists to accomplish this. The purpose of this technical note is to describe an open-source high-throughput computational pipeline framework for the reconstruction and analysis of diagnostic CT imaging data to conduct large-scale quantitative imaging studies and to accelerate and improve quantitative imaging research. METHODS: The pipeline consists of two, primary "blocks": reconstruction and analysis. Reconstruction is carried out via a graphics processing unit (GPU) queuing framework developed specifically for the pipeline that allows a dataset to be reconstructed using a variety of different parameter configurations such as slice thickness, reconstruction kernel, and simulated acquisition dose. The analysis portion then automatically analyzes the output of the reconstruction using "modules" that can be combined in various ways to conduct different experiments. Acceleration of analysis is achieved using cluster processing. Efficiency and performance of the pipeline are demonstrated using an example 142 subject lung screening cohort reconstructed 36 different ways and analyzed using quantitative emphysema scoring techniques. RESULTS: The pipeline reconstructed and analyzed the 5112 reconstructed datasets in approximately 10 days, a roughly 72× speedup over previous efforts using the scanner for reconstructions. Tightly coupled pipeline quality assurance software ensured proper performance of analysis modules with regard to segmentation and emphysema scoring. CONCLUSIONS: The pipeline greatly reduced the time from experiment conception to quantitative results. The modular design of the pipeline allows the high-throughput framework to be utilized for other future experiments into different quantitative imaging techniques. Future applications of the pipeline being explored are robustness testing of quantitative imaging metrics, data generation for deep learning, and use as a test platform for image-processing techniques to improve clinical quantitative imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Gráficos por Computador , Controle de Qualidade , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA