Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(37)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35667366

RESUMO

Nanowire growth enables creation of embedded heterostructures, where one material is completely surrounded by another. Through materials-selective post-growth oxidation it is also possible to combine amorphous oxides and crystalline, e.g. III-V materials. Such oxide-embedded structures pose a challenge for compositional characterization through transmission electron microscopy since the materials will overlap in projection. Furthermore, materials electrically isolated by an embedding oxide are more sensitive to electron beam-induced alterations. Methods that can directly isolate the embedded material, preferably at reduced electron doses, will be required in this situation. Here, we analyse the performance of two such techniques-local lattice parameter measurements from high resolution micrographs and bulk plasmon energy measurements from electron energy loss spectra-by applying them to analyse InP-AlInP segments embedded in amorphous aluminium oxide. We demonstrate the complementarity of the two methods, which show an overall excellent agreement. However, in regions with residual strain, which we analyse through molecular dynamics simulations, the two techniques diverge from the true value in opposite directions.

2.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770120

RESUMO

Spark ablation is an advantageous method for the generation of metallic nanoparticles with defined particle sizes and compositions. The reaction of the metal particles with the carrier gas during the synthesis and, therefore, the incorporation of those light elements into structural voids or even compound formation was confirmed for hydrides and oxides but has only been suspected to occur for nitrides. In this study, dispersed nanoparticles of Mo3Ni2N and Mo with Janus morphology, and defined particle sizes were obtained by spark discharge generation as a result of carrier gas ionization and characterized using transmission electron microscopy and powder X-ray diffraction. Metal nitrides possess beneficial catalytic and thermoelectric properties, as well as high hardness and wear resistance. Therefore, this method offers the possibility of controlled synthesis of materials which are interesting for numerous applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA