Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 70(9): 1675-1683, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087489

RESUMO

OBJECTIVE: Conjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown. DESIGN: We evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant. Chemical and molecular gain/loss-of-function experiments targeting specific taurine-conjugated bile acid-induced changes of farnesoid X receptor (FXR) in the brain were performed in parallel. RESULTS: We found that short-term HF feeding increased the levels of taurochenodeoxycholic acid (TCDCA, an FXR ligand) in the upper small intestine, ileum, plasma and dorsal vagal complex (DVC) of the brain. Transplantation of upper small intestinal healthy microbiome into the upper small intestine of HF rats not only reversed the rise of TCDCA in all reported tissues but also enhanced the ability of either circulating hyperinsulinaemia or DVC insulin action to lower glucose production. Further, DVC infusion of TCDCA or FXR agonist negated the enhancement of insulin action, while genetic knockdown or chemical inhibition of FXR in the DVC of HF rats reversed insulin resistance. CONCLUSION: Our findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.


Assuntos
Tronco Encefálico/fisiologia , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Intestino Delgado/microbiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Ácido Tauroquenodesoxicólico/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Tronco Encefálico/metabolismo , Dieta Hiperlipídica , Transplante de Microbiota Fecal , Técnicas de Silenciamento de Genes , Técnica Clamp de Glucose , Resistência à Insulina/fisiologia , Intestino Delgado/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/análise , Ácido Tauroquenodesoxicólico/análise
2.
Biochem Biophys Res Commun ; 485(2): 409-413, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213131

RESUMO

Neuroendocrine regulatory peptide (NERP)-2 is derived from a distinct region of VGF, a neurosecretory protein originally identified as a product of a nerve growth factor-responsive gene in rat PC12 cells. Colocalization of NERP-2 with orexin-A in the lateral hypothalamus increases orexin-A-induced feeding and energy expenditure in both rats and mice. Orexigenic and anorectic peptides in the hypothalamus modulate gastric function. In this study, we investigated the effect of NERP-2 on gastric function in rats. Intracerebroventricular administration of NERP-2 to rats increased gastric acid secretion and gastric emptying, whereas peripheral administration did not affect gastric function. NERP-2-induced gastric acid secretion and gastric emptying were blocked by an orexin 1 receptor antagonist, SB334867. NERP-2 also induced Fos expression in the lateral hypothalamus and the dorsomotor nucleus of the vagus X, which are key sites in the central nervous system for regulation of gastric function. Atropine, a blocker of vagal efferent signal transduction, completely blocked NERP-2-induced gastric acid secretion. These results demonstrate that central administration of NERP-2 activates the orexin pathway, resulting in elevated gastric acid secretion and gastric emptying.


Assuntos
Ácido Gástrico/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Receptores de Orexina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Atropina/farmacologia , Benzoxazóis/farmacologia , Injeções Intraventriculares , Masculino , Naftiridinas , Proteínas do Tecido Nervoso/administração & dosagem , Parassimpatolíticos/farmacologia , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Ureia/análogos & derivados , Ureia/farmacologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
3.
Biochem Biophys Res Commun ; 464(4): 1157-1162, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26208455

RESUMO

A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Encefalite/imunologia , Grelina/imunologia , Hipotálamo/imunologia , Gânglio Nodoso/imunologia , Doenças do Nervo Vago/imunologia , Animais , Encefalite/etiologia , Encefalite/patologia , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/patologia , Doenças do Nervo Vago/etiologia , Doenças do Nervo Vago/patologia
4.
Biochem Biophys Res Commun ; 428(4): 512-7, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23111332

RESUMO

Neuroendocrine regulatory peptide (NERP)-2, recently identified as a bioactive peptide involved in vasopressin secretion and feeding regulation in the central nervous system, is abundantly expressed in endocrine cells in peripheral tissues. To explore the physiological roles of NERP-2 in the pancreas, we examined its effects on insulin secretion. NERP-2 increased glucose-stimulated insulin secretion (GSIS) in a dose-dependent manner, with a lowest effective dose of 10(-7) M, from the pancreatic ß-cell line MIN6 and isolated mouse pancreatic islets. NERP-2 did not affect insulin secretion under the low-glucose conditions. Neither NERP-1 nor NERP-2-Gly (nonamidated NERP-2) stimulated insulin secretion. NERP-2 significantly augmented GSIS after intravenous administration to anesthetized rats or intraperitoneal injection to conscious mice. We detected NERP-2 in pancreatic islets, where it co-localized extensively with insulin. Calcium-imaging analysis demonstrated that NERP-2 increased the calcium influx in MIN6 cells. These findings reveal that NERP-2 regulates GSIS by elevating intracellular calcium concentrations.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos/fisiologia , Animais , Linhagem Celular Tumoral , Glucose/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Ratos , Ratos Wistar
5.
Mol Neurobiol ; 59(11): 6754-6770, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002781

RESUMO

Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor (M1R) with specific/selective antagonists prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. Specifically, in type 1 and type 2 models of diabetes, inhibition of M1R using pirenzepine or muscarinic toxin 7 (MT7) induced AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve fiber loss. The human neuroblastoma SH-SY5Y cell line has been extensively used as an in vitro model system to study mechanisms of neurodegeneration in DRG neurons and other neuronal sub-types. Here, we tested the hypothesis that pirenzepine or MT7 enhance AMPK activity and via this pathway augment mitochondrial function in SH-SY5Y cells. M1R expression was confirmed by utilizing a fluorescent dye, ATTO590-labeled MT7, that exhibits great specificity for this receptor. M1R antagonist treatment in SH-SY5Y culture increased AMPK phosphorylation and mitochondrial protein expression (OXPHOS). Mitochondrial membrane potential (MMP) was augmented in pirenzepine and MT7 treated cultured SH-SY5Y cells and DRG neurons. Compound C or AMPK-specific siRNA suppressed pirenzepine or MT7-induced elevation of OXPHOS expression and MMP. Moreover, muscarinic antagonists induced hyperpolarization by activating the M-current and, thus, suppressed neuronal excitability. These results reveal that negative regulation of this M1R-dependent pathway could represent a potential therapeutic target to elevate AMPK activity, enhance mitochondrial function, suppress neuropathic pain, and enhance nerve repair in peripheral neuropathy.


Assuntos
Neuroblastoma , Doenças do Sistema Nervoso Periférico , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcolina , Transporte de Elétrons , Corantes Fluorescentes , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Antagonistas Muscarínicos/farmacologia , Neurônios/metabolismo , Pirenzepina/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores Muscarínicos/metabolismo
6.
Nat Commun ; 12(1): 903, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568676

RESUMO

The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes.


Assuntos
Intestino Delgado/metabolismo , Nutrientes/metabolismo , Animais , Células Enteroendócrinas/metabolismo , Homeostase , Humanos
7.
Mol Metab ; 44: 101132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33264656

RESUMO

OBJECTIVE: The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown. METHODS: Intravenous glucose tolerance test was performed in rats that received USI or ileal infusion of nutrients (i.e., oleic acids or glucose) via catheters placed toward the lumen of USI and/or ileum, while mechanistic gain- and loss-of-function studies targeting the TCDCA-FXR axis or bile salt hydrolase activity in USI and ileum were performed. RESULTS: USI or ileum infusion of nutrients increased glucose tolerance in healthy but not HF rats. Transplantation of healthy microbiome obtained from USI into the USI of HF rats restored nutrient sensing and inhibited FXR via a reduction of TCDCA in the USI and ileum. Further, inhibition of USI and ileal FXR enhanced nutrient sensing in HF rats, while inhibiting USI (but not ileal) bile salt hydrolase of HF rats transplanted with healthy microbiome activated FXR and disrupted nutrient sensing in the USI and ileum. CONCLUSIONS: We reveal a TCDCA-FXR axis in both the USI and ileum that is necessary for the upper small intestinal microbiome to govern local nutrient-sensing glucoregulatory pathways in rats.


Assuntos
Intestino Delgado/metabolismo , Nutrientes , Ácido Tauroquenodesoxicólico/metabolismo , Animais , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Íleo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
8.
Appl Environ Microbiol ; 76(13): 4233-40, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20472740

RESUMO

Toxigenic Vibrio cholerae, the causative agent of the epidemic diarrheal disease cholera, interacts with diverse environmental bacteriophages. These interactions promote genetic diversity or cause selective enrichment of phage-resistant bacterial clones. To identify bacterial genes involved in mediating the phage-resistant phenotype, we screened a transposon insertion library of V. cholerae O1 El Tor biotype strain C6706 to identify mutants showing altered susceptibility to a panel of phages isolated from surface waters in Bangladesh. Mutants with insertion in cyaA or crp genes encoding adenylate cyclase or cyclic AMP (cAMP) receptor protein (CRP), respectively, were susceptible to a phage designated JSF9 to which the parent strain was completely resistant. Application of the cyaA mutant as an indicator strain in environmental phage monitoring enhanced phage detection, and we identified 3 additional phages to which the parent strain was resistant. Incorporation of the cyaA or crp mutations into other V. cholerae O1 strains caused similar alterations in their phage susceptibility patterns, and the susceptibility correlated with the ability of the bacteria to adsorb these phages. Our results suggest that cAMP-CRP-mediated downregulation of phage adsorption may contribute to a mechanism for the V. cholerae O1 strains to survive predation by multiple environmental phages. Furthermore, the cyaA or crp mutant strains may be used as suitable indicators in monitoring cholera phages in the water.


Assuntos
Bacteriófagos/fisiologia , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Rios/virologia , Transdução de Sinais , Vibrio cholerae O1/virologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Bacteriófagos/isolamento & purificação , Bangladesh , Regulação para Baixo , Mutação , Vibrio cholerae O1/fisiologia
9.
In Silico Biol ; 10(5-6): 235-46, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430357

RESUMO

A major problem in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. In this study, a computational approach was adopted to identify a multi-epitope vaccine candidate against dengue virus that may be suitable for large populations in the dengue-endemic regions. Different bioinformatics tools were exploited that helped the identification of a conserved immunological hot-spot in the dengue envelope protein. The tools also rendered the prediction of immunogenicity and population coverage to the proposed 'in silico' vaccine candidate against dengue. A peptide region, spanning 19 amino acids, was identified in the envelope protein which found to be conserved in all four types of dengue viruses. Ten proteasomal cleavage sites were identified within the 19-mer conserved peptide sequence and a total of 8 overlapping putative cytotoxic T cell (CTL) epitopes were identified. The immunogenicity of these epitopes was evaluated in terms of their binding affinities to and dissociation half-time from respective human leukocyte antigen (HLA) molecules. The HLA allele frequencies were studied among populations in the dengue endemic regions and compared with respect to HLA restriction patterns of the overlapping epitopes. The cumulative population coverage for these epitopes as vaccine candidates was high ranging from approximately 80% to 92%. Structural analysis suggested that a 9-mer epitope fitted well into the peptide-binding groove of HLA-A*0201. In conclusion, the 19-mer epitope cluster was shown to have the potential for use as a vaccine candidate against dengue.


Assuntos
Antígenos Virais/química , Vacinas contra Dengue/química , Dengue/prevenção & controle , Doenças Endêmicas/prevenção & controle , Epitopos de Linfócito T/química , Antígeno HLA-A2/química , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Antígenos Virais/imunologia , Sequência Conservada , Dengue/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/química , Vírus da Dengue/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Humanos , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas , Proteínas do Envelope Viral/imunologia
10.
Sci Rep ; 10(1): 18415, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116243

RESUMO

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr+Glp1r+ neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.


Assuntos
Vias Aferentes/fisiologia , Regulação do Apetite , Grelina/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Gânglio Nodoso/fisiologia , Animais , Cálcio/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar , Receptores de Grelina/metabolismo
11.
In Silico Biol ; 9(4): 245-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20109154

RESUMO

Bacteria have developed several defense mechanisms against bacteriophages over evolutionary time, but the concept of prokaryotic RNA interference mediated defense mechanism against phages and other invading genetic elements has emerged only recently. Clustered regularly interspaced short palindromic repeats (CRISPR) together with closely associated genes (cas genes) constitute the CASS system that is believed to provide a RNAi-like defense mechanism against bacteriophages within the host bacterium. However, a CASS mediated RNAi-like pathway in enteric pathogens such as Vibrio cholerae O395 or Escherichia coli O157 have not been reported yet. This study specifically was designed to investigate the possibility and evolutionary origin of CASS mediated RNAi-like pathway in the genome of a set of enteric pathogens, especially V. cholerae. The results showed that V. cholerae O395 and also other related enteric pathogens have the essential CASS components (CRISPR and cas genes) to mediate a RNAi-like pathway. The functional domains of a V. cholerae Cas3 protein, which is believed to act as a prokaryotic Dicer, was revealed and compared with the domains of eukaryotic Dicer proteins. Extensive homology in several functional domains provides significant evidence that the Cas3 protein has the essential domains to play a vital role in RNAi like pathway in V. cholerae. The secondary structure of the pre-siRNA for V. cholerae O395 was determined and its thermodynamic stability also reinforced the previous findings and signifies the probability of a RNAi-like pathway in V. cholerae O395.


Assuntos
Evolução Biológica , Genes Bacterianos , Sequências Repetidas Invertidas , Interferência de RNA , Vibrio cholerae/genética , Animais , Proteínas de Bactérias/genética , Genoma Bacteriano , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA/química , RNA/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Transdução de Sinais/fisiologia , Vibrio cholerae/classificação , Vibrio cholerae/metabolismo
12.
Nat Commun ; 10(1): 714, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755615

RESUMO

Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR.


Assuntos
Glicemia/metabolismo , Glucose/biossíntese , Intestino Delgado/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenoviridae/genética , Animais , Dieta Hiperlipídica , Homeostase , Resistência à Insulina , Intestino Delgado/efeitos dos fármacos , Masculino , Metformina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Nat Rev Gastroenterol Hepatol ; 15(10): 625-636, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185916

RESUMO

The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.


Assuntos
Homeostase , Nervo Vago/fisiologia , Animais , Metabolismo Energético/fisiologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Humanos
14.
J Mol Endocrinol ; 60(2): 109-118, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233861

RESUMO

High-fat diet (HFD)-induced metabolic inflammation in the central and peripheral organs contributes to the pathogenesis of obesity. Long-term HFD blunts signaling by ghrelin, a gastric-derived orexigenic peptide, in the vagal afferent nerve via a mechanism involving in situ activation of inflammation. This study was undertaken to investigate whether ghrelin resistance is associated with progressive development of metabolic inflammation. In mice, ghrelin's orexigenic activity was abolished 2-4 weeks after the commencement of HFD (60% of energy from fat), consistent with the timing of accumulation and activation of macrophages and microglia in the nodose ganglion and hypothalamus. Calorie-restricted weight loss after 12-week HFD feeding restored ghrelin responsiveness and alleviated the upregulation of macrophage/microglia activation markers and inflammatory cytokines. HSP72, a chaperone protein, was upregulated in the hypothalamus of HFD-fed mice, potentially contributing to prevention of irreversible neuron damage. These results demonstrate that ghrelin resistance is reversible following reversal of the HFD-induced inflammation and obesity phenotypes.


Assuntos
Grelina/farmacologia , Inflamação/metabolismo , Redução de Peso , Animais , Biomarcadores/metabolismo , Restrição Calórica , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Redução de Peso/efeitos dos fármacos
15.
Neurosci Lett ; 681: 50-55, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29802915

RESUMO

The vagus nerve connects peripheral organs to the central nervous system (CNS), and gastrointestinal hormones transmit their signals to the CNS via the vagal afferent nerve. Ghrelin, a gastric-derived orexigenic peptide, stimulates food intake by transmitting starvation signals via the vagus nerve. To understand peripheral ghrelin signaling via the vagus nerve, we investigated the ghrelin receptor (GHSR)-null mouse. For this purpose, we tried to produce mice in which GHSR was selectively expressed in the hindbrain and vagus nerve. GHSR was expressed in some nodose ganglion neurons in these mice, but GHSR-expressing neurons were less abundant than in wild-type mice. Intraperitoneal administration of ghrelin did not induce food intake or growth hormone release, but did increase blood glucose levels. Our findings suggest that the abundance of GHSR-expressing neurons in the nodose ganglion is critical for peripheral administration of ghrelin-induced food intake and growth hormone release via the vagus nerve.


Assuntos
Grelina/metabolismo , Gânglio Nodoso/metabolismo , Receptores de Grelina/deficiência , Transdução de Sinais/fisiologia , Nervo Vago/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Grelina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gânglio Nodoso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos
16.
Nat Commun ; 9(1): 1118, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549253

RESUMO

High protein feeding improves glucose homeostasis in rodents and humans with diabetes, but the mechanisms that underlie this improvement remain elusive. Here we show that acute administration of casein hydrolysate directly into the upper small intestine increases glucose tolerance and inhibits glucose production in rats, independently of changes in plasma amino acids, insulin levels, and food intake. Inhibition of upper small intestinal peptide transporter 1 (PepT1), the primary oligopeptide transporter in the small intestine, reverses the preabsorptive ability of upper small intestinal casein infusion to increase glucose tolerance and suppress glucose production. The glucoregulatory role of PepT1 in the upper small intestine of healthy rats is further demonstrated by glucose homeostasis disruption following high protein feeding when PepT1 is inhibited. PepT1-mediated protein-sensing mechanisms also improve glucose homeostasis in models of early-onset insulin resistance and obesity. We demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by PepT1 have beneficial effects on whole-body glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dieta Rica em Proteínas , Glucose/metabolismo , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Transportador 1 de Peptídeos/metabolismo , Aminoácidos/sangue , Animais , Caseínas/administração & dosagem , Hiperglicemia/patologia , Insulina/sangue , Intestino Delgado/enzimologia , Masculino , Transportador 1 de Peptídeos/antagonistas & inibidores , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
17.
Cell Metab ; 27(3): 572-587.e6, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514066

RESUMO

Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Glucose/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Lactobacillus gasseri/metabolismo , Animais , Dieta Hiperlipídica/métodos , Emulsões/metabolismo , Transplante de Microbiota Fecal/métodos , Homeostase , Ácido Linoleico/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Fosfolipídeos/metabolismo , Ratos Sprague-Dawley , Óleo de Soja/metabolismo
18.
Cell Metab ; 27(1): 101-117.e5, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29056513

RESUMO

The gut microbiota alters energy homeostasis. In parallel, metformin regulates upper small intestinal sodium glucose cotransporter-1 (SGLT1), but whether changes of the microbiota or SGLT1-dependent pathways in the upper small intestine mediate metformin action is unknown. Here we report that upper small intestinal glucose sensing triggers an SGLT1-dependent pathway to lower glucose production in rodents. High-fat diet (HFD) feeding reduces glucose sensing and SGLT1 expression in the upper small intestine. Upper small intestinal metformin treatment restores SGLT1 expression and glucose sensing while shifting the upper small intestinal microbiota partly by increasing the abundance of Lactobacillus. Transplantation of upper small intestinal microbiota from metformin-treated HFD rats to the upper small intestine of untreated HFD rats also increases the upper small intestinal abundance of Lactobacillus and glucose sensing via an upregulation of SGLT1 expression. Thus, we demonstrate that metformin alters upper small intestinal microbiota and impacts a glucose-SGLT1-sensing glucoregulatory pathway.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Metformina/farmacologia , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Dieta Hiperlipídica , Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Análise de Componente Principal , Ratos
19.
Eur J Pharmacol ; 794: 37-44, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27876617

RESUMO

Chronic inflammation in systemic organs, such as adipose tissue, nodose ganglion, hypothalamus, and skeletal muscles, is closely associated with obesity and diabetes mellitus. Because sodium glucose cotransporter 2 (SGLT2) inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of canagliflozin, an SGLT2 inhibitor, on obesity-induced inflammation in neural tissues and skeletal muscles of mice. High-fat diet (HFD)-fed male C57BL/6J mice were treated with canagliflozin for 8 weeks. Canagliflozin attenuated the HFD-mediated increases in body weight, liver weight, and visceral and subcutaneous fat weight. Additionally, canagliflozin decreased blood glucose as well as the fat, triglyceride, and glycogen contents of the liver. Along with these metabolic corrections, canagliflozin attenuated the increases in the mRNA levels of the proinflammatory biomarkers Iba1 and Il6 and the number of macrophages/microglia in the nodose ganglion and hypothalamus. In the skeletal muscle of HFD-fed obese mice, canagliflozin decreased inflammatory cytokine levels, macrophage accumulation, and the mRNA level of the specific atrophic factor atrogin-1. Canagliflozin also increased the mRNA level of insulin-like growth factor 1, protected against muscle mass loss, and restored the contractile force of muscle. These findings suggested that SGLT2 inhibition disrupts the vicious cycle of obesity and inflammation, not only by promoting caloric loss, but also by suppression of obesity-related inflammation in both the nervous system and skeletal muscle.


Assuntos
Canagliflozina/farmacologia , Hipotálamo/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Obesidade/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Metabolismo Basal/efeitos dos fármacos , Canagliflozina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Inflamação/complicações , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiopatologia , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais/efeitos dos fármacos
20.
J Endocrinol ; 226(1): 81-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26016745

RESUMO

Ghrelin, a stomach-derived orexigenic peptide, transmits starvation signals to the hypothalamus via the vagus afferent nerve. Peripheral administration of ghrelin does not induce food intake in high fat diet (HFD)-induced obese mice. We investigated whether this ghrelin resistance was caused by dysfunction of the vagus afferent pathway. Administration (s.c.) of ghrelin did not induce food intake, suppression of oxygen consumption, electrical activity of the vagal afferent nerve, phosphorylation of ERK2 and AMP-activated protein kinase alpha in the nodose ganglion, or Fos expression in hypothalamic arcuate nucleus of mice fed a HFD for 12 weeks. Administration of anti-ghrelin IgG did not induce suppression of food intake in HFD-fed mice. Expression levels of ghrelin receptor mRNA in the nodose ganglion and hypothalamus of HFD-fed mice were reduced. Inflammatory responses, including upregulation of macrophage/microglia markers and inflammatory cytokines, occurred in the nodose ganglion and hypothalamus of HFD-fed mice. A HFD blunted ghrelin signaling in the nodose ganglion via a mechanism involving in situ activation of inflammation. These results indicate that ghrelin resistance in the obese state may be caused by dysregulation of ghrelin signaling via the vagal afferent.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Grelina/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Grelina/administração & dosagem , Grelina/sangue , Hipotálamo/fisiopatologia , Inflamação/etiologia , Inflamação/genética , Inflamação/fisiopatologia , Leptina/administração & dosagem , Leptina/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/fisiopatologia , Obesidade/genética , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Grelina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA