Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Arch Environ Contam Toxicol ; 84(3): 307-317, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912955

RESUMO

Naled, an organophosphate insecticide, is applied aerially at ultra-low volumes over aquatic ecosystems near Sacramento, California, USA, during summer months for mosquito control. Two ecosystem types (rice fields and a flowing canal) were sampled in 2020 and 2021. Naled and its primary degradation product (dichlorvos) were measured in water, biofilm, grazer macroinvertebrates, and omnivore/predator macroinvertebrates (predominantly crayfish). Maximum naled and dichlorvos concentrations detected in water samples one day after naled application were 287.3 and 5647.5 ng/L, respectively, which were above the U.S. Environmental Protection Agency's aquatic life benchmarks for invertebrates. Neither compound was detected in water more than one day after the application. Dichlorvos, but not naled, was detected in composite crayfish samples up to 10 days after the last aerial application. Detections in water from the canal showed that the compounds were transported downstream of the target application area. Factors such as vector control flight paths, dilution, and transport through air and water likely affected concentrations of naled and dichlorvos in water and organisms from these aquatic ecosystems.


Assuntos
Inseticidas , Naled , Diclorvós , Ecossistema , Controle de Mosquitos , Inseticidas/análise , Água
2.
Environ Monit Assess ; 187(1): 4086, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384371

RESUMO

We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California's wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n = 1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56% of the variance in O/E values. Models for individual regions explained between 51 and 84% of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n ≤ 75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect taxonomic completeness is imperative for sound management. Our results suggest that invertebrate taxonomic completeness is affected by human disturbance at the statewide and regional levels, with some differences among regions in the importance of natural gradients and types of human disturbance. The construction and application of models similar to the ones presented here could be useful in the planning and prioritization of actions for protection and conservation of biodiversity in California streams.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental/métodos , Modelos Biológicos , Rios/química , California , Clima , Árvores de Decisões , Sistemas de Informação Geográfica , Urbanização
3.
Sci Total Environ ; 915: 169634, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38272727

RESUMO

Multistressor studies were performed in five regions of the United States to assess the role of pesticides as stressors affecting invertebrate communities in wadable streams. Pesticides and other chemical and physical stressors were measured in 75 to 99 streams per region for 4 weeks, after which invertebrate communities were surveyed (435 total sites). Pesticides were sampled weekly in filtered water, and once in bed sediment. The role of pesticides as a stressor to invertebrate communities was assessed by evaluating multiple lines of evidence: toxicity predictions based on measured pesticide concentrations, multivariate models and other statistical analyses, and previously published mesocosm experiments. Toxicity predictions using benchmarks and species sensitivity distributions and statistical correlations suggested that pesticides were present at high enough concentrations to adversely affect invertebrate communities at the regional scale. Two undirected techniques-boosted regression tree models and distance-based linear models-identified which pesticides were predictors of (respectively) invertebrate metrics and community composition. To put insecticides in context with known, influential covariates of invertebrate response, generalized additive models were used to identify which individual pesticide(s) were important predictors of invertebrate community condition in each region, after accounting for natural covariates. Four insecticides were identified as stressors to invertebrate communities at the regional scale: bifenthrin, chlordane, fipronil and its degradates, and imidacloprid. Fipronil was particularly important in the Southeast region, and imidacloprid, bifenthrin, and chlordane were important in multiple regions. For imidacloprid, bifenthrin, and fipronil, toxicity predictions were supported by mesocosm experiments that demonstrated adverse effects on naïve aquatic communities when dosed under controlled conditions. These multiple lines of evidence do not prove causality-which is challenging in the field under multistressor conditions-but they make a strong case for the role of insecticides as stressors adversely affecting invertebrate communities in streams within the five sampled regions.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Estados Unidos , Praguicidas/análise , Inseticidas/análise , Rios/química , Clordano/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Invertebrados
4.
Front Environ Sci ; 12: 1-19, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516348

RESUMO

Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.

5.
Sci Rep ; 12(1): 10465, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729231

RESUMO

We analyzed the large-scale drivers of biological invasions using freshwater fish in a Mediterranean country as a test case, and considering the contribution of single species to the overall invasion pattern. Using Boosted Regression Tree (BRT) models, variation partitioning and Redundancy Analysis (RDA), we found that human factors (especially eutrophication) and climate (especially temperature) were significant drivers of overall invasion. Geography was also relevant in BRT and RDA analysis, both at the overall invasion and the single species level. Only variation partitioning suggested that land use was the second most significant driver group, with considerable overlap between different invasion drivers and only land use and human factors standing out for single effects. There was general accordance both between different analyses, and between invasion outcomes at the overall and the species level, as most invasive species share similar ecological traits and prefer lowland river stretches. Human-mediated eutrophication was the most relevant invasion driver, but the role of geography and climate was at least equally important in explaining freshwater fish invasions. Overall, human factors were less prominent than natural factors in driving the spread and prevalence of invasion, and the species spearheading it.


Assuntos
Efeitos Antropogênicos , Ecossistema , Animais , Peixes , Água Doce , Espécies Introduzidas
6.
PLoS One ; 17(4): e0267113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486607

RESUMO

Management actions intended to benefit fish in large rivers can directly or indirectly affect multiple ecosystem components. Without consideration of the effects of management on non-target ecosystem components, unintended consequences may limit management efficacy. Monitoring can help clarify the effects of management actions, including on non-target ecosystem components, but only if data are collected to characterize key ecosystem processes that could affect the outcome. Scientists from across the U.S. convened to develop a conceptual model that would help identify monitoring information needed to better understand how natural and anthropogenic factors affect large river fishes. We applied the conceptual model to case studies in four large U.S. rivers. The application of the conceptual model indicates the model is flexible and relevant to large rivers in different geographic settings and with different management challenges. By visualizing how natural and anthropogenic drivers directly or indirectly affect cascading ecosystem tiers, our model identified critical information gaps and uncertainties that, if resolved, could inform how to best meet management objectives. Despite large differences in the physical and ecological contexts of the river systems, the case studies also demonstrated substantial commonalities in the data needed to better understand how stressors affect fish in these systems. For example, in most systems information on river discharge and water temperature were needed and available. Conversely, information regarding trophic relationships and the habitat requirements of larval fishes were generally lacking. This result suggests that there is a need to better understand a set of common factors across large-river systems. We provide a stepwise procedure to facilitate the application of our conceptual model to other river systems and management goals.


Assuntos
Ecossistema , Rios , Animais , Conservação dos Recursos Naturais/métodos , Peixes , Modelos Teóricos
7.
Sci Total Environ ; 800: 149350, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399326

RESUMO

Biological assemblages in streams are affected by a wide variety of physical and chemical stressors associated with land-use development, yet the importance of combinations of different types of stressors is not well known. From 2013 to 2017, the U.S. Geological Survey completed multi-stressor/multi-assemblage stream ecological assessments in five regions of the United States (434 streams total). Diatom, invertebrate, and fish communities were enumerated, and five types of potential stressors were quantified: habitat disturbance, excess nutrients, high flows, basic water quality, and contaminants in water and sediment. Boosted regression tree (BRT) models for each biological assemblage and region generally included variables from all five stressor types and multiple stressors types in each model was the norm. Classification and regression tree (CART) models then were used to determine thresholds for each BRT model variable above which there appeared to be adverse effects (multi-metric index (MMI) models only). In every region and assemblage there was a significant inverse relation between the MMI and the number of stressors exerting potentially adverse effects. The number of elevated instream stressors often varied substantially for a given level of land-use development and the number of elevated stressors was a better predictor of biological condition than was development. Using the adverse effects-levels that were developed based on the BRT model results, 68% of the streams had two or more stressors with potentially adverse effects and 35% had four or more. Our results indicate that relatively small increases in the number of stressors of different types can have a large effect on a stream ecosystem.


Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental , Peixes , Invertebrados , Estados Unidos , Qualidade da Água
8.
Sci Total Environ ; 773: 145062, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940714

RESUMO

Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014-2017, the U.S. Geological Survey (USGS) measured 389 unique organic analytes (pharmaceutical, pesticide, organic wastewater indicators) in 305 headwater streams within four contiguous United States (US) regions. Potential aquatic biological effects were evaluated for estimated maximum and median exposure conditions using multiple lines of evidence, including occurrence/concentrations of designed-bioactive pesticides and pharmaceuticals and cumulative risk screening based on vertebrate-centric ToxCast™ exposure-response data and on invertebrate and nonvascular plant aquatic life benchmarks. Mixed-contaminant exposures were ubiquitous and varied, with 78% (304) of analytes detected at least once and cumulative maximum concentrations up to more than 156,000 ng/L. Designed bioactives represented 83% of detected analytes. Contaminant summary metrics correlated strong-positive (rho (ρ): 0.569-0.719) to multiple watershed-development metrics, only weak-positive to point-source discharges (ρ: 0.225-353), and moderate- to strong-negative with multiple instream invertebrate metrics (ρ: -0.373 to -0.652). Risk screening indicated common exposures with high probability of vertebrate-centric molecular effects and of acute toxicity to invertebrates, respectively. The results confirm exposures to broad and diverse contaminant mixtures and provide convincing multiple lines of evidence that chemical contaminants contribute substantially to adverse multi-stressor effects in headwater-stream communities.

9.
Ecol Appl ; 20(5): 1384-401, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20666256

RESUMO

Responses of benthic macroinvertebrates along gradients of urban intensity were investigated in nine metropolitan areas across the United States. Invertebrate assemblages in metropolitan areas where forests or shrublands were being converted to urban land were strongly related to urban intensity. In metropolitan areas where agriculture and grazing lands were being converted to urban land, invertebrate assemblages showed much weaker or nonsignificant relations with urban intensity because sites with low urban intensity were already degraded by agriculture. Ordination scores, the number of EPT taxa, and the mean pollution-tolerance value of organisms at a site were the best indicators of changes in assemblage condition. Diversity indices, functional groups, behavior, and dominance metrics were not good indicators of urbanization. Richness metrics were better indicators of urban effects than were abundance metrics, and qualitative samples collected from multiple habitats gave similar results to those of single habitat quantitative samples (riffles or woody snags) in all metropolitan areas. Changes in urban intensity were strongly correlated with a set of landscape variables that was consistent across all metropolitan areas. In contrast, the instream environmental variables that were strongly correlated with urbanization and invertebrate responses varied among metropolitan areas. The natural environmental setting determined the biological, chemical, and physical instream conditions upon which urbanization acts and dictated the differences in responses to urbanization among metropolitan areas. Threshold analysis showed little evidence for an initial period of resistance to urbanization. Instead, assemblages were degraded at very low levels of urbanization, and response rates were either similar across the gradient or higher at low levels of urbanization. Levels of impervious cover that have been suggested as protective of streams (5-10%) were associated with significant assemblage degradation and were not protective.


Assuntos
Invertebrados/fisiologia , Urbanização , Animais , Estados Unidos
10.
Environ Toxicol Chem ; 39(6): 1219-1232, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128866

RESUMO

Sediment contamination of freshwater streams in urban areas is a recognized and growing concern. As a part of a comprehensive regional stream-quality assessment, stream-bed sediment was sampled from streams spanning a gradient of urban intensity in the Piedmont ecoregion of the southeastern United States. We evaluated relations between a broad suite of sediment contaminants (metals, current-use pesticides, organochlorine pesticides, polychlorinated biphenyls, brominated diphenyl ethers, and polycyclic aromatic hydrocarbons), ambient sediment toxicity, and macroinvertebrate communities from 76 sites. Sediment toxicity was evaluated by conducting whole-sediment laboratory toxicity testing with the amphipod Hyalella azteca (for 28 d) and the midge Chironomus dilutus (for 10 d). Approximately one-third of the sediment samples were identified as toxic for at least one test species endpoint, although concentrations of contaminants infrequently exceeded toxicity benchmarks. Ratios of contaminant concentrations relative to their benchmarks, both individually and as summed benchmark quotients, were explored on a carbon-normalized and a dry-weight basis. Invertebrate taxa measures from ecological surveys tended to decline with increasing urbanization and with sediment contamination. Toxicity test endpoints were more strongly related to sediment contamination than invertebrate community measures were. Sediment chemistry and sediment toxicity provided moderate and weak, respectively, explanatory power for the similarity/dissimilarity of invertebrate communities. The results indicate that current single-chemical sediment benchmarks may underestimate the effects from mixtures of sediment contaminants experienced by lotic invertebrates. Environ Toxicol Chem 2020;39:1219-1232. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Anfípodes/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Anfípodes/crescimento & desenvolvimento , Animais , Chironomidae/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sudeste dos Estados Unidos , Testes de Toxicidade , Poluentes Químicos da Água/análise
11.
Environ Monit Assess ; 154(1-4): 1-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18629444

RESUMO

The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location.


Assuntos
Ecossistema , Invertebrados/crescimento & desenvolvimento , Animais , Monitoramento Ambiental , Geografia , Estados Unidos
12.
PLoS One ; 14(10): e0222714, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618213

RESUMO

Future land-use development has the potential to profoundly affect the health of aquatic ecosystems in the coming decades. We developed regression models predicting the loss of sensitive fish (R2 = 0.39) and macroinvertebrate (R2 = 0.64) taxa as a function of urban and agricultural land uses and applied them to projected urbanization of the rapidly urbanizing Piedmont ecoregion of the southeastern USA for 2030 and 2060. The regression models are based on a 2014 investigation of water quality and ecology of 75 wadeable streams across the region. Based on these projections, stream kilometers experiencing >50% loss of sensitive fish and invertebrate taxa will nearly quadruple to 19,500 and 38,950 km by 2060 (16 and 32% of small stream kilometers in the region), respectively. Uncertainty was assessed using the 20 and 80% probability of urbanization for the land-use projection model and using the 95% confidence intervals for the regression models. Adverse effects on stream health were linked to elevated concentrations of contaminants and nutrients, low dissolved oxygen, and streamflow alteration, all associated with urbanization. The results of this analysis provide a warning of potential risks from future urbanization and perhaps some guidance on how those risks might be mitigated.


Assuntos
Agricultura , Conservação dos Recursos Hídricos , Urbanização , Qualidade da Água , Animais , Região dos Apalaches , Monitoramento Ambiental/estatística & dados numéricos , Peixes , Invertebrados , Rios
13.
Sci Total Environ ; 660: 1472-1485, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743940

RESUMO

During 2014, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project assessed stream quality in 75 streams across an urban disturbance gradient within the Piedmont ecoregion of southeastern United States. Our objectives were to identify primary instream stressors affecting algal, macroinvertebrate and fish assemblages in wadeable streams. Biotic communities were surveyed once at each site, and various instream stressors were measured during a 4-week index period preceding the ecological sampling. The measured stressors included nutrients; contaminants in water, passive samplers, and sediment; instream habitat; and flow variability. All nine boosted regression tree models - three for each of algae, invertebrates, and fish - had cross-validation R2 (CV R2) values of 0.41 or above, and an invertebrate model had the highest CV R2 of 0.65. At least one contaminant metric was important in every model, and minimum daytime dissolved oxygen (DO), nutrients, and flow alteration were important explanatory variables in many of the models. Physical habitat metrics such as sediment substrate were only moderately important. Flow alteration metrics were useful factors in eight of the nine models. Total phosphorus, acetanilide herbicides and flow (time since last peak) were important in all three algal models, whereas insecticide metrics (especially those representing fipronil and imidacloprid) were dominant in the invertebrate models. DO values below approximately 7 mg/L corresponded to a strong decrease in sensitive taxa or an increase in tolerant taxa. DO also showed strong interactions with other variables, particularly contaminants and sediment, where the combined effect of low DO and elevated contaminants increased the impact on the biota more than each variable individually. Contaminants and flow alteration were strongly correlated to urbanization, indicating the importance of urbanization to ecological stream condition in the region.


Assuntos
Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Animais , Cidades , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Peixes/fisiologia , Sedimentos Geológicos/química , Invertebrados/efeitos dos fármacos , Modelos Teóricos , Oxigênio/análise , Praguicidas/análise , Análise de Regressão , Estresse Fisiológico , Estados Unidos , Movimentos da Água
14.
Sci Total Environ ; 655: 70-83, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469070

RESUMO

Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Misturas Complexas/toxicidade , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água , Misturas Complexas/análise , Ecossistema , Previsões , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Heliyon ; 4(11): e00904, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450436

RESUMO

The U.S. Geological Survey (USGS) Southeastern Stream Quality Assessment (SESQA) collected weekly samples for nitrogen and phosphorus in 76 wadeable streams in the urbanized Piedmont Ecoregion of the Southeastern United States, during April-June 2014. Total nitrogen (TN) concentrations in excess of U.S. Environmental Protection Agency (EPA) guidelines and statistically greater than at reference locations indicated nitrogen-nutrient enrichment in streams draining poultry confined animal feeding operations (CAFO) or urban centers. Nitrate plus nitrite (NO3 + NO2) dominated TN species in urban/CAFO-influenced streams. Streams that drained poultry CAFO and Washington DC had statistically higher NO3 + NO2 concentrations than streams draining Atlanta, Charlotte, Greenville, or Raleigh. In contrast, total phosphorus (TP) concentrations in Atlanta and Washington DC streams statistically were comparable to and lower than, respectively, reference stream concentrations. Over 50% of TP concentrations in Greenville, Charlotte, Raleigh and CAFO-influenced streams exceeded the EPA guideline and reference-location mean concentrations, indicating phosphorus-nutrient enrichment. Urban land use, permitted point sources, and soil infiltration metrics best predicted TN exceedances. Elevated TN and NO3 + NO2 concentrations in urban streams during low flow were consistent with reduced in-stream dilution of point-source or groundwater contributions. Urban land use, permitted point sources, and surface runoff metrics best predicted TP exceedances. Elevated TP in CAFO and urban streams during high flow were consistent with non-point sources and particulate transport.

16.
PLoS One ; 13(1): e0191472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364953

RESUMO

Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.


Assuntos
Peixes , Rios , Animais , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/tendências , Monitorização de Parâmetros Ecológicos/métodos , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Ecossistema , Pesqueiros , Humanos , Estados Unidos
17.
Sci Total Environ ; 599-600: 1469-1478, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531955

RESUMO

Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and multivariate community analysis) suggest that elevated contaminant concentrations in sediments, in particular bifenthrin, is limiting macroinvertebrate communities in several of these Midwest streams.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Meio-Oeste dos Estados Unidos , Piretrinas/toxicidade
18.
Sci Total Environ ; 484: 331-43, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24703225

RESUMO

While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.


Assuntos
Estuários , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
19.
PLoS One ; 9(3): e90944, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675770

RESUMO

We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R(2) for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive.


Assuntos
Invertebrados , Modelos Teóricos , Animais , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA