Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Environ Sci Technol ; 58(20): 8988-8999, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38725314

RESUMO

An industrially viable catalyst for heterogeneous catalytic ozonation (HCO) in water purification requires the characteristics of good dispersion of active species on its surface, efficient electron transfer for ozone decay, and maximum active species utilization. While metal-organic frameworks (MOFs) represent an attractive platform for HCO, the metal nodes in the unmodified MOFs exhibit low catalytic activity. Herein, we present a perfluorinated Fe-MOF catalyst by substituting H atoms on the metalated ligands with F atoms (termed 4F-MIL-88B) to induce structure evolution. The Lewis acidity of 4F-MIL-88B was enhanced via the formation of Fe nodes, tailoring the electron distribution on the catalyst surface. As a result of catalyst modification, the rate constant for degradation of the target compounds examined increased by ∼700% compared with that observed for the unmodified catalyst. Experimental evidence and theoretical calculations showed that the modulated polarity and the enhanced electron transfer between the catalyst and ozone molecules contributed to the adsorption and transformation of O3 to •OH on the catalyst surface. Overall, the results of this study highlight the significance of tailoring the metalated ligands to develop highly efficient and stable MOF catalysts for HCO and provide an in-depth mechanistic understanding of their structure-function evolution, which is expected to facilitate the applications of nanomaterial-based processes in water purification.


Assuntos
Estruturas Metalorgânicas , Ozônio , Purificação da Água , Estruturas Metalorgânicas/química , Ozônio/química , Catálise , Purificação da Água/métodos , Ferro/química
2.
Inorg Chem ; 62(32): 12741-12749, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37535840

RESUMO

Heteroleptic copper complexes of an asymmetrical pincer ligand containing a central anionic sulfonamide donor (pyridine-2-yl-sulfonyl)(quinolin-8-yl)-amide (psq), which contains a central anionic sulfonamido donor have been prepared. Meridional κ3-N,N″,N‴ binding with the co-ligands acetate, chloride, or acetonitrile (MeCN), trans to the central sulfonamido N-donor, is revealed by the X-ray crystal structures of [Cu(OAc)(psq)(H2O)], [CuCl(psq)]2, and [Cu(psq)(MeCN)](PF6). Either overall distorted square pyramidal or octahedral geometries of the copper atom are satisfied by coordinated water in the case of the acetate complex or interactions with periphery sulfonamido oxygen atoms on adjacent molecules in the dimeric chloride and 1D polymeric acetonitrile complexes. The cyclic voltammogram (CV) of [Cu(OAc)(psq)(H2O)] shows a quasi-reversible CuII/CuI reduction at -0.930 V (vs Fc+/Fc0, MeCN), and an irreversible CuII/CuI reduction for [Cu(psq)(MeCN)](PF6) is seen at -0.838 V. This signal is split into two quasi-reversible redox processes on the addition of 2,2,2-trifluoroethanol (TFE). This suggests that TFE pushes a solution equilibrium toward a dimeric acetate complex analogous to [CuCl(psq)]2, which shows two quasi-reversible waves at -0.666 V and -0.904 V vs Fc+/Fc0 consistent with its dimeric solid-state structure. A comparison of the CVs of [Cu(OAc)(psq)(H2O)] under either a N2 or an O2 atmosphere revealed that this complex catalyzes turnover electro-reduction of O2 to H2O2 and H2O. The rate of reaction increases on addition of a weak organic acid, and a coulombic efficiency of 48% for H2O2 was determined by iodometric titration. We propose that a CuI complex formed on electroreduction binds O2 to yield an intermediate superoxide complex. On electron and proton transfer to this species, a bifurcated route back to the O2-activating CuI complex is feasible with either release of H2O2 or O-O cleavage resulting in the liberation of H2O. The CuI complex is regenerated by subsequent reduction and protonation to close the cycle.

3.
Inorg Chem ; 62(44): 18219-18227, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37877669

RESUMO

The tetradentate tripodal ligand scaffold is capable of supporting the expected geometries of the copper ion during the oxygen reduction reaction (ORR) catalysis. As such, we probed the reactivity of copper complexes with these types of ligands by electronically and structurally tweaking the tris(pyridin 2-ylmethyl)amine (tmpa) scaffold by progressively replacing the terminal pyridines with carboxylate donors. This work shows that systems with one carboxylato donor (bpg = bis(pyridin-2-ylmethyl)glycine), (bpp = (3-(bis(pyridin-2-ylmethyl)amino)propanoic acid)) are active in electrocatalyzing the homogeneous ORR under circumneutral aqueous conditions. Turnover frequencies in the range from 105 to 106 s-1, on par with that for Cu-tmpa under identical conditions, were obtained. It is noteworthy that the CuII/CuI redox potentials for the Cu-bpg, Cu-bpp, and Cu-tmpa systems in phosphate-buffered water (pH 7, under Ar) are similar at -0.409, -0.375, and -0.401 V vs Ag/AgCl, respectively. This is rationalized by the influence of the Lewis acidity of the copper ions on the water coligand. Corroborating this are pKa values for [Cu(tmpa)(H2O)]2+, Cu(bpg)(H2O)]+, and [Cu(bpp)(H2O)]+ of 6.6, 8.8, and 10.2, respectively. Thus, the overall charge of the solution species for all three complexes will be +1 at pH 7 and this will be an important determinant for the redox potentials and, in turn, the catalytic overpotentials, which are also similar. A cis carboxylato donor offers H-bonding possibilities for exogenous resting state water and intermediate hydroperoxo coligands. This is reflected by the higher pKa values for Cu-bpp and Cu-bpg compared with that for Cu-tmpa, with the Cu-bpp system furnishing the least strained H-bonding.

4.
Chem Rev ; 121(13): 8161-8233, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34143612

RESUMO

Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.

5.
Environ Sci Technol ; 57(39): 14726-14736, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721968

RESUMO

Electrochemical reduction of nitrate is a promising method for the removal of nitrate from contaminated groundwater. However, the presence of hardness cations (Ca2+ and Mg2+) in groundwaters hampers the electroreduction of nitrate as a result of the precipitation of carbonate-containing solids of these elements on the cathode surface. Thus, some pretreatment process is required to remove unwanted hardness cations. Herein, we present a proof-of-concept of a novel three-chambered flow electrode unit, constituting a flow electrode capacitive deionization (FCDI) unit and a flow cathode (FC) unit, which achieves cation removal, nitrate capture and reduction, and ammonia generation in a single cell without the need for any additional chemicals/electrolyte. The addition of the FCDI unit not only achieves removal of hardness cations but also concentrates the nitrate ions and other anions, which facilitates nitrate reduction in the subsequent FC unit. Results show that the FCDI cell voltage influences electrode stability but has a minimal impact on the overall nitrate removal performance. The concentration of coexisting anions influences the nitrate removal due to competitive sorption of anions on the electrode surface. Our results further show that stable electrochemical performance was obtained over 26 h of operation. Overall, this study provides a scalable strategy for continuous nitrate electroreduction and ammonia generation from nitrate contaminated groundwaters containing hardness ions.

6.
Environ Sci Technol ; 57(6): 2557-2565, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36725204

RESUMO

Iron complexes of tetra-amido macrocyclic ligands (Fe-TAML) are recognized to be effective catalysts for the degradation of a wide range of organic contaminants in homogeneous conditions with the high valent Fe(IV) and Fe(V) species generated on activation of the Fe-TAML complex by hydrogen peroxide (H2O2) recognized to be powerful oxidants. Electrochemical activation of Fe-TAML would appear an attractive alternative to H2O2 activation, especially if the Fe-TAML complex could be attached to the anode, as this would enable formation of high valent iron species at the anode and, importantly, retention of the valuable Fe-TAML complex within the reaction system. In this work, we affix Fe-TAML to the surface of carbon black particles and apply this "suspension anode" process to oxidize selected target compounds via generation of high valent iron species. We show that the overpotential for Fe(IV) formation is 0.17 V lower than the potential required to generate Fe(IV) electrochemically in homogeneous solution and also show that the stability of the Fe(IV) species is enhanced considerably compared to the homogeneous Fe-TAML case. Application of the carbon black-supported Fe-TAML suspension anode reactor to degradation of oxalate and hydroquinone with an initial pH value of 3 resulted in oxidation rate constants that were up to three times higher than could be achieved by anodic oxidation in the absence of Fe-TAML and at energy consumptions per order of removal substantially lower than could be achieved by alternate technologies.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Compostos Férricos/química , Peróxido de Hidrogênio/química , Fuligem , Elétrons , Ferro/química , Oxirredução
7.
Environ Sci Technol ; 57(11): 4690-4700, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36905367

RESUMO

The formula assignment of the Fourier transform ion cyclotron resonance mass spectrometry coupled with positive-ion electrospray ionization [ESI(+)-FT-ICR MS] is challenging because of the extensive occurrence of adducts. However, there is a paucity of automated formula assignment methods for ESI(+)-FT-ICR MS spectra. The novel automated formula assignment algorithm for ESI(+)-FT-ICR MS spectra developed herein has been applied to elucidate the composition of dissolved organic matter (DOM) in groundwater during air-induced ferrous [Fe(II)] oxidation. The ESI(+)-FT-ICR MS spectra of groundwater DOM were profoundly impacted by [M + Na]+ adducts and, to a lesser extent, [M + K]+ adducts. Oxygen-poor and N-containing compounds were frequently detected when the FT-ICR MS was operated in the ESI(+) mode, while the components with higher carbon oxidation states were preferentially ionized in the negative-ion electrospray ionization [ESI(-)] mode. Values for the difference between double-bond equivalents and the number of oxygen atoms from -13 to 13 are proposed for the formula assignment of the ESI(+)-FT-ICR MS spectra of aquatic DOM. Furthermore, for the first time, the Fe(II)-mediated formation of highly toxic organic iodine species was reported in groundwater rich in Fe(II), iodide, and DOM. The results of this study not only shed light on the further algorithm development for comprehensive characterization of DOM by ESI(-)-FT-ICR MS and ESI(+)-FT-ICR MS but also highlight the importance of appropriate treatment of specific groundwater prior to use.


Assuntos
Água Subterrânea , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Matéria Orgânica Dissolvida , Oxigênio , Compostos Ferrosos
8.
Environ Sci Technol ; 57(47): 18617-18625, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36721331

RESUMO

Ferryl ion ([FeIVO]2+) has often been suggested to play a role in iron-based advanced oxidation processes (AOPs) with its presence commonly determined using the unique oxidation pathway from methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2). However, we show here that the oxidation products of PMSO, formed on reaction with hydroxyl radical, enhance PMSO2 formation as a result of their complexation with Fe(III) leading to the changes in the reactivity of Fe(III) species in the homogeneous Fenton reaction. As such, PMSO should be used with caution to investigate the role of [FeIVO]2+ in iron-based AOPs with these insights suggesting the need to reassess the findings of many previous studies in which this reagent was used. The other common target compounds, phthalhydrazide and hydroxybenzoic acids, were also found to modify the rate and extent of iron cycling as a result of complexation and/or redox reactions, either by the probe compound itself and/or oxidation products formed. Overall, this study highlights that these confounding effects of the aromatic probe compounds on the reactivity of iron species should be recognized if reliable mechanistic insights into iron-based AOPs are to be obtained.


Assuntos
Compostos Férricos , Radical Hidroxila , Ácido Benzoico , Ferro , Oxirredução , Peróxido de Hidrogênio
9.
Environ Sci Technol ; 57(47): 18636-18646, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36648439

RESUMO

Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.


Assuntos
Ozônio , Poluentes Químicos da Água , Águas Residuárias , Compostos Férricos , Catálise , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 57(5): 2105-2117, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688915

RESUMO

Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.


Assuntos
Compostos Férricos , Fósforo , Compostos Férricos/química , Fósforo/química , Cristalização , Eliminação de Resíduos Líquidos/métodos , Esgotos , Fosfatos/química , Compostos Ferrosos/química
11.
Environ Sci Technol ; 57(33): 12476-12488, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578119

RESUMO

Cu and Ni complexes with ethylenediaminetetraacetic acid (Cu/Ni-EDTA), which are commonly present in metal plating industry wastewaters, pose a serious threat to both the environment and human health due to their high toxicity and low biodegradability. In this study, the treatment of solutions containing either or both Cu-EDTA and Ni-EDTA using an electrochemical process is investigated under both oxidizing and reducing electrolysis conditions. Our results indicate that Cu-EDTA is decomplexed as a result of the cathodic reduction of Cu(II) with subsequent electrodeposition of Cu(0) at the cathode when the cathode potential is more negative than the reduction potential of Cu-EDTA to Cu(0). In contrast, the very negative reduction potential of Ni-EDTA to Ni(0) renders the direct reduction of EDTA-complexed Ni(II) at the cathode unimportant. The removal of Ni during the electrolysis process mainly occurs via anodic oxidation of EDTA in Ni-EDTA, with the resulting formation of low-molecular-weight organic acids and the release of Ni2+, which is subsequently deposited as Ni0 on the cathode. A kinetic model incorporating the key reactions occurring in the electrolysis process has been developed, which satisfactorily describes EDTA, Cu, Ni, and TOC removal. Overall, this study improves our understanding of the mechanism of removal of heavy metals from solution during the electrochemical advanced oxidation of metal plating wastewaters.


Assuntos
Complexos de Coordenação , Águas Residuárias , Humanos , Ácido Edético/química , Complexos de Coordenação/química , Galvanoplastia , Cobre
12.
Environ Sci Technol ; 57(30): 11345-11355, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37464745

RESUMO

The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 µg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.


Assuntos
Água Subterrânea , Urânio , Purificação da Água , Cloretos , Purificação da Água/métodos , Adsorção , Eletrodos , Água
13.
Environ Sci Technol ; 57(50): 21178-21189, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064756

RESUMO

Sunlight plays a crucial role in the transformation of dissolved organic matter (DOM) and the associated carbon cycle in aquatic environments. This study demonstrates that the presence of nanomolar concentrations of copper (Cu) significantly decreases the rate of photobleaching and the rate of loss of electron-donating moieties of three selected types of DOM (including both terrestrial and microbially derived DOM) under simulated sunlight irradiation. Employing Fourier transform ion cyclotron resonance mass spectrometry, we further confirm that Cu selectively inhibits the photooxidation of lignin- and tannin-like phenolic moieties present within the DOM, in agreement with the reported inhibitory impact of Cu on the photooxidation of phenolic compounds. On the basis of the inhibitory impact of Cu on the DOM photobleaching rate, we calculate the contribution of phenolic moieties to DOM photobleaching to be at least 29-55% in the wavelength range of 220-460 nm. The inhibition of loss of electrons from DOM during irradiation in the presence of Cu is also explained quantitatively by developing a mathematical model describing hydrogen peroxide (a proxy measure of loss of electrons from DOM) formation on DOM irradiation in the absence and presence of Cu. Overall, this study advances our understanding of DOM transformation in natural sunlit waters.


Assuntos
Cobre , Matéria Orgânica Dissolvida , Luz Solar , Fenóis , Espectrometria de Massas
14.
J Phys Chem A ; 127(50): 10663-10680, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38081796

RESUMO

The kinetics of oxidation of micromolar concentrations of ascorbic acid (AA) catalyzed by Cu(II) in solutions representative of biological and environmental aqueous systems has been investigated in both the presence and absence of oxygen. The results reveal that the reaction between AA and Cu(II) is a relatively complex set of redox processes whereby Cu(II) initially oxidizes AA yielding the intermediate ascorbate radical (A•-) and Cu(I). The rate constant for this reaction was determined to have a lower limit of 2.2 × 104 M-1 s-1. Oxygen was found to play a critical role in mediating the Cu(II)/Cu(I) redox cycle and the oxidation reactions of AA and its oxidized forms. Among these processes, the oxidation of the ascorbate radical by molecular oxygen was identified to play a key role in the consumption of ascorbic acid, despite being a slow reaction. The rate constant for this reaction (A•-+O2→DHA+O2•-) was determined for the first time with a calculated value of 54 ± 8 M-1 s-1. The kinetic model developed satisfactorily describes the Cu/AA/O2 system over a range of conditions including different concentrations of NaCl (0.2 and 0.7 M) and pH (7.4 and 8.1). Appropriate adjustments to the rate constant for the reaction between Cu(I) and O2 were found to account for the influence of the chloride ions and pH on the kinetics of the process. Additionally, the presence of Cu(III) as the primary oxidant resulting from the interaction between Cu(I) and H2O2 in the Cu(II)/AA system was confirmed, along with the coexistence of HO•, possibly due to an equilibrium established between Cu(III) and HO•.

15.
Environ Sci Technol ; 56(2): 1278-1288, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34965094

RESUMO

The heterogeneous Fenton process in the presence of Fe-containing minerals is ubiquitous in nature and widely deployed in wastewater treatment. While there have been extensive relevant studies, the dependence on pH of the nature and extent of oxidant generation and key reaction pathways remain unclear. Herein, the adsorption and decomposition of formate and H2O2 were quantified in the presence of ferrihydrite within the pH range of 3.0-6.0, and experiments with methyl phenyl sulfoxide were conducted to distinguish between HO• and weaker oxidant(s) which react via oxygen atom transfer including ferryl ion ([FeIVO]2+) and/or ferric hydroperoxo intermediates (≡FeIII(O2H)). Both HO• and [FeIVO]2+/≡FeIII(O2H) are concurrently produced on the surface over the acidic to near-neutral pH range. Despite the simultaneous formation of both oxidants, HO• is the major oxidant responsible for substrate oxidation in the interfacial boundary layer with [FeIVO]2+/≡FeIII(O2H) exhibiting limited exposure to substrates. With an increase of pH, the yield of both oxidants is inhibited by the decreasing availability of surface sites due to ferrihydrite particle aggregation. Increasing pH also favors the nonradical decay of H2O2 as evident from the consistent oxidant production rate relative to the surface area (SSA) despite an accelerated H2O2 decay rate relative to SSA with pH increase.


Assuntos
Compostos Férricos , Radical Hidroxila , Compostos Férricos/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxidantes/química , Oxirredução
16.
Environ Sci Technol ; 56(9): 5820-5829, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35442646

RESUMO

An electrochemical advanced oxidation process (EAOP) is demonstrated with a catalytic cathode capable of simultaneously catalyzing the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) with resultant in situ generation of atomic hydrogen (H*) and hydrogen peroxide (H2O2). A palladium-coated carbon-PTFE gas diffusion electrode (Pd/C GDE) was used as a catalytic cathode with hydroxyl radical (•OH) formed as a result of the reaction of electrogenerated H* with H2O2. As both the HER and ORR can be induced to occur at the same cathode, the H*/GDE process results in more effective degradation of organic contaminants than can be achieved by a conventional H*/H2O2 process involving direct addition of H2O2. At circumneutral pH, 82.7% of added formate was degraded after 2 h treatment at an applied potential of -1.0 V vs Ag/AgCl with relatively low concentrations of generated H2O2 remaining in the solution. We also show that H* and H2O2 (and thus •OH) can be electrogenerated effectively over a wide range of pH (3.2-7.0). These results suggest that by in situ generation of H* and H2O2, the H*/GDE process is able to produce significant amounts of •OH without external chemical addition and thus offers an alternative method for abatement of aqueous organic contaminants.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Hidrogênio , Radical Hidroxila , Oxirredução , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 56(14): 10391-10401, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35766603

RESUMO

Boron is present in the form of boric acid (B(OH)3 or H3BO3) in seawater, geothermal waters, and some industrial wastewaters but is toxic at elevated concentrations to both plants and humans. Effective removal of boron from solutions at circumneutral pH by existing technologies such as reverse osmosis is constrained by high energy consumption and low removal efficiency. In this work, we present an asymmetric, membrane-containing flow-by electrosorption system for boron removal. Upon charging, the catholyte pH rapidly increases to above ∼10.7 as a result of water electrolysis and other Faradaic reactions with resultant deprotonation of boric acid to form B(OH)4- and subsequent removal from solution by electrosorption to the anode. Results also show that the asymmetric flow-by electrosorption system is capable of treating feed streams with high concentrations of boron and RO permeate containing multiple competing ionic species. On the basis of the experimental results obtained, a mathematical model has been developed that adequately describes the kinetics and mechanism of boron removal by the asymmetric electrosorption system. Overall, this study not only provides new insights into boron removal mechanisms by electrosorption but also opens up a new pathway to eliminate amphoteric pollutants from contaminated source waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Boro , Estudos de Viabilidade , Filtração , Humanos , Osmose , Purificação da Água/métodos
18.
Environ Sci Technol ; 56(7): 4377-4385, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319191

RESUMO

The efficacy of oxidation of recalcitrant organic contaminants in municipal and industrial wastewaters by ozonation is influenced by chemical reaction kinetics and hydrodynamics within a reactor. A 3D computational fluid dynamics (CFD) model incorporating both multiphase flow and reaction kinetics describing ozone decay, hydroxyl radical (•OH) generation, and organic oxidation was developed to simulate the performance of continuous flow ozonation reactors. Formate was selected as the target organic in this study due to its well-understood oxidation pathway. Simulation results revealed that the dissolved ozone concentration in the reactor is controlled by rates of O3(g) interphase transfer and ozone self-decay. Simulations of the effect of various operating conditions showed that the reaction stoichiometric constraints between formate and ozone were reached; however, complete utilization of gas phase ozone was hard to achieve due to the low ozone interphase mass transfer rate. Increasing the O3(g) concentration leads to an increase in the formate removal rate by ∼5% due to an enhancement in the rate of O3(g) interphase mass transfer. The CFD model adequately describes the mass transfer occurring in the two-phase flow system and confirms that O3(g) interphase mass transfer is the rate-limiting step in contaminant degradation. The model can be used to optimize the ozone reactor design for improved contaminant degradation and ozonation efficiency.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Hidrodinâmica , Cinética , Oxirredução , Ozônio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Environ Sci Technol ; 56(23): 17298-17309, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394539

RESUMO

The presence of excessive concentrations of nitrate in industrial wastewaters, agricultural runoff, and some groundwaters constitutes a serious issue for both environmental and human health. As a result, there is considerable interest in the possibility of converting nitrate to the valuable product ammonia by electrochemical means. In this work, we demonstrate the efficacy of a novel flow cathode system coupled with ammonia stripping for effective nitrate removal and ammonia generation and recovery. A copper-loaded activated carbon slurry (Cu@AC), made by a simple, low-cost wet impregnation method, is used as the flow cathode in this novel electrochemical reactor. Use of a 3 wt % Cu@AC suspension at an applied current density of 20 mA cm-2 resulted in almost complete nitrate removal, with 97% of the nitrate reduced to ammonia and 70% of the ammonia recovered in the acid-receiving chamber. A mathematical kinetic model was developed that satisfactorily describes the kinetics and mechanism of the overall nitrate electroreduction process. Minimal loss of Cu to solution and maintenance of nitrate removal performance over extended use of Cu@AC flow electrode augers well for long-term use of this technology. Overall, this study sheds light on an efficient, low-cost water treatment technology for simultaneous nitrate removal and ammonia generation and recovery.


Assuntos
Amônia , Nitratos , Humanos , Eletrodos , Óxidos de Nitrogênio , Cobre
20.
Environ Sci Technol ; 56(12): 8819-8832, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549159

RESUMO

Persulfate (PS)-based advanced oxidation processes (AOPs) have been promoted as alternatives to H2O2-based AOPs. To gauge the potential of this technology, the PS/Fe(II) and Fenton (H2O2/Fe(II)) processes were comparatively evaluated using formate as a simple target compound and nanofiltration concentrate from a municipal wastewater treatment plant as a complex suite of contaminants with the aid of kinetic modeling. In terms of the short-term rate and extent of mineralization of formate and the nanofiltration concentrate, PS/Fe(II) is less effective due to slow Fe(II)/Fe(III) cycling attributable to the scavenging of superoxide by PS. However, in the concentrate treatment, PS/Fe(II) provided a sustained removal of total organic carbon (TOC), with ∼81% removed after 7 days with SO4•- consistently produced via homolysis of the long-life PS. In comparison, H2O2/Fe(II) exhibited limited TOC removal over ∼57% after 10 h due to the futile consumption of H2O2 by HO•. PS/Fe(II) also offers better performance at transforming humic-like moieties to more biodegradable compounds as a result of chlorine radicals formed by the reaction of SO4•- with the matrix constituents present in the concentrate. The application of PS/Fe(II) is, however, subject to the limitations of slow oxidation of organic contaminants, release of sulfate, and formation of chlorinated byproducts.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Compostos Férricos/química , Compostos Ferrosos/química , Formiatos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Sulfatos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA