Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 22(3): 776-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931096

RESUMO

Soft X-ray angle-resolved photoemission has been performed for metallic V2O3. By combining a microfocus beam (40 µm × 65 µm) and micro-positioning techniques with a long-working-distance microscope, it has been possible to observe band dispersions from tiny cleavage surfaces with a typical size of several tens of µm. The photoemission spectra show a clear position dependence, reflecting the morphology of the cleaved sample surface. By selecting high-quality flat regions on the sample surface, it has been possible to perform band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional angle-resolved photoemission spectroscopy for typical three-dimensional correlated materials where large cleavage planes are rarely obtained.

2.
Nat Commun ; 11(1): 4969, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037206

RESUMO

Magnetic Weyl semimetals have novel transport phenomena related to pairs of Weyl nodes in the band structure. Although the existence of Weyl fermions is expected in various oxides, the evidence of Weyl fermions in oxide materials remains elusive. Here we show direct quantum transport evidence of Weyl fermions in an epitaxial 4d ferromagnetic oxide SrRuO3. We employ machine-learning-assisted molecular beam epitaxy to synthesize SrRuO3 films whose quality is sufficiently high to probe their intrinsic transport properties. Experimental observation of the five transport signatures of Weyl fermions-the linear positive magnetoresistance, chiral-anomaly-induced negative magnetoresistance, π phase shift in a quantum oscillation, light cyclotron mass, and high quantum mobility of about 10,000 cm2V-1s-1-combined with first-principles electronic structure calculations establishes SrRuO3 as a magnetic Weyl semimetal. We also clarify the disorder dependence of the transport of the Weyl fermions, which gives a clear guideline for accessing the topologically nontrivial transport phenomena.

3.
Nat Commun ; 10(1): 535, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755601

RESUMO

Magnetic insulators have wide-ranging applications, including microwave devices, permanent magnets and future spintronic devices. However, the record Curie temperature (TC), which determines the temperature range in which any ferri/ferromagnetic system remains stable, has stood still for over eight decades. Here we report that a highly B-site ordered cubic double-perovskite insulator, Sr3OsO6, has the highest TC (of ~1060 K) among all insulators and oxides; also, this is the highest magnetic ordering temperature in any compound without 3d transition elements. The cubic B-site ordering is confirmed by atomic-resolution scanning transmission electron microscopy. The electronic structure calculations elucidate a ferromagnetic insulating state with Jeff = 3/2 driven by the large spin-orbit coupling of Os6+ 5d2 orbitals. Moreover, the Sr3OsO6 films are epitaxially grown on SrTiO3 substrates, suggesting that they are compatible with device fabrication processes and thus promising for spintronic applications.

4.
Sci Rep ; 6: 23295, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996202

RESUMO

We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge(1-x)Fex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20-100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA