Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(19): 193602, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216610

RESUMO

Entangled photons produced by spontaneous parametric down-conversion have been of paramount importance for our current understanding of quantum mechanics and advances in quantum information. In this process, the quantum correlations of the down-converted photons are governed by the optical properties of the pump beam illuminating the nonlinear crystal. Extensively, the pump beam has been modeled by either coherent beams or by the well-known Gaussian-Schell model, which leads to the natural conclusion that a high degree of optical coherence is required for the generation of highly entangled states. Here, we show that when a novel class of partially coherent Gaussian pump beams is considered, a distinct type of quantum state can be generated for which the amount of entanglement increases inversely with the degree of coherence of the pump beam. This leads to highly incoherent yet highly entangled multiphoton states, which should have interesting consequences for photonic quantum information science.

2.
Phys Rev Lett ; 124(12): 120402, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281831

RESUMO

We show-both theoretically and experimentally-that Einstein-Podolsky-Rosen steering can be distilled. We present a distillation protocol that outputs a perfectly correlated system-the singlet assemblage-in the asymptotic infinite-copy limit, even for inputs that are arbitrarily close to being unsteerable. As figures of merit for the protocol's performance, we introduce the assemblage fidelity and the singlet-assemblage fraction. These are potentially interesting quantities on their own beyond the current scope. Remarkably, the protocol works well also in the nonasymptotic regime of few copies, in the sense of increasing the singlet-assemblage fraction. We demonstrate the efficacy of the protocol using a hyperentangled photon pair encoding two copies of a two-qubit state. This represents to our knowledge the first observation of deterministic steering concentration. Our findings are not only fundamentally important but may also be useful for semi-device-independent protocols in noisy quantum networks.

3.
Phys Rev Lett ; 112(5): 053602, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580590

RESUMO

We report an experiment in which the moments of spatial coordinates are measured in down-converted photons directly, without having to reconstruct any marginal probability distributions. We use a spatial light modulator to couple the spatial degrees of freedom and the polarization of the fields, which acts as an ancilla system. Information about the spatial correlations is obtained via measurements on the ancilla qubit. Among other applications, this new method provides a more efficient technique to identify continuous variable entanglement.

4.
Phys Rev Lett ; 113(24): 240501, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541759

RESUMO

When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and observe the transition from bipartite to multipartite entanglement and back, and show how these transitions are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit entanglement is observed at some points of the evolution.

5.
Phys Rev Lett ; 112(16): 160501, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815628

RESUMO

A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states-at sufficiently low temperature-are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalization for these states. This allows us to tune the system's temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterization of experimental cluster-state computation under imperfect conditions.

6.
J Opt Soc Am A Opt Image Sci Vis ; 31(4): 704-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24695131

RESUMO

We experimentally implement an optical algorithm for integration of a real-valued bivariate function. A user-defined function is encoded in the position-dependent phase of one of the polarization components of an optical beam. The integral of this function is retrieved by measuring a Stokes parameter of the polarization. We analyze the performance of the system as an integration device.

7.
Phys Rev Lett ; 110(21): 210502, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745847

RESUMO

We derive reliable entanglement witnesses for coarse-grained measurements on continuous variable systems. These witnesses never return a "false positive" for identification of entanglement, under any degree of coarse graining. We show that even in the case of Gaussian states, entanglement witnesses based on the Shannon entropy can outperform those based on variances. We apply our results to experimental identification of spatial entanglement of photon pairs.

8.
Phys Rev Lett ; 108(6): 063601, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401071

RESUMO

The perception that quantum correlations can still appear in separable states has opened exciting new possibilities regarding their use as a resource in quantum information science. Quantifying such quantum correlations involves the complete knowledge of the system's state and numerical optimization procedures. Thus, it is natural to seek methods involving fewer measurements that indicate the nature of the correlations in a system. Here we propose a classicality witness that can be accurately estimated via statistics from a single measurement and perform an experiment to explore the utility of this witness for quantum states with different types of correlations.

9.
Phys Rev Lett ; 109(15): 150403, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102279

RESUMO

The dynamics of the environment is usually experimentally inaccessible and hence ignored for open systems. Here we overcome this limitation by using an interferometric setup that allows the implementation of several decoherence channels and full access to all environmental degrees of freedom. We show that when a qubit from an entangled pair interacts with the environment, the initial bipartite entanglement gets redistributed into bipartite and genuine multipartite entanglements involving the two qubits and the environment. This is yet another trait of the subtle behavior of entangled open systems.

10.
Phys Rev Lett ; 109(19): 190402, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215364

RESUMO

We use the classical correlation between a quantum system being measured and its measurement apparatus to analyze the amount of information being retrieved in a quantum measurement process. Accounting for decoherence of the apparatus, we show that these correlations may have a sudden transition from a decay regime to a constant level. This transition characterizes a nonasymptotic emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence. This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an experiment with polarization entangled photon pairs.

11.
Nature ; 440(7087): 1022-4, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16625190

RESUMO

Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

12.
Proc Natl Acad Sci U S A ; 106(51): 21517-20, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19995963

RESUMO

Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.

13.
Opt Express ; 19(18): 17308-17, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935095

RESUMO

The spatial correlation between down-converted photons allows for non-local spatial filtering when two-photon coincidences are registered. This allows one to non-locally control the visibility of interference fringes, to observe ghost images and interference patterns, and to "retrieve" a coherent quantum image from an incoherent field distribution. We show theoretically that non-local spatial filtering can lead to counter-intuitive effects when the pump beam is no longer given by a Gaussian profile. Namely, increased non-local filtering can actually decrease the visibility of interference fringes, contrary to what has been observed so far. We explain this behavior through the transverse spatial parity entanglement of the down-converted photons.

14.
Phys Rev Lett ; 106(13): 130402, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517361

RESUMO

Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.

15.
Sci Rep ; 11(1): 20489, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650177

RESUMO

Certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography and random number generation protocols. These applications entail the challenging problem of certifying quantum nonlocality, something that is hard to achieve when the target quantum state is only weakly entangled, or when the source of errors is high, e.g. when photons propagate through the atmosphere or a long optical fiber. Here we introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit for a given set of measurement frequencies. Our method represents an efficient strategy to certify quantum nonlocal correlations from experimental data without requiring extra measurements, in the sense that there is no Bell inequality with a larger gap than the one provided. Furthermore, we also reduce the photodetector efficiency required to close the detection loophole. We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.

16.
Phys Rev Lett ; 103(16): 160505, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19905682

RESUMO

We derive several entanglement criteria for bipartite continuous variable quantum systems based on the Shannon entropy. These criteria are more sensitive than those involving only second-order moments, and are equivalent to well-known variance product tests in the case of Gaussian states. Furthermore, they involve only a pair of quadrature measurements, and will thus prove extremely useful in the experimental identification of entanglement.

17.
Nat Commun ; 6: 7941, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235944

RESUMO

The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

18.
Sci Rep ; 4: 5337, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24939691

RESUMO

We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is accomplished by means of the polarization dependence of the modulator, which allows the conversion of a phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for unwanted coincidence counts due to polarization decoherence effects.

19.
Sci Rep ; 3: 3530, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24346262

RESUMO

The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non-classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups.

20.
Science ; 324(5933): 1414-7, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19443736

RESUMO

The estimation of the entanglement of multipartite systems undergoing decoherence is important for assessing the robustness of quantum information processes. It usually requires access to the final state and its full reconstruction through quantum tomography. General dynamical laws may simplify this task. We found that when one of the parties of an initially entangled two-qubit system is subject to a noisy channel, a single universal curve describes the dynamics of entanglement for both pure and mixed states, including those for which entanglement suddenly disappears. Our result, which is experimentally demonstrated using a linear optics setup, leads to a direct and efficient determination of entanglement through the knowledge of the initial state and single-party process tomography alone, foregoing the need to reconstruct the final state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA