Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 15(11): 28088-98, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561812

RESUMO

The sensitivity of two commercial metal oxide (MOx) sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914) is based on tungsten oxide, the other (MQ-3) on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3) and 5.7 ppm (MiCS-5914).


Assuntos
Técnicas de Química Analítica/instrumentação , Etilenos/análise , Óxidos/química , Compostos de Estanho/química , Tungstênio/química , Técnicas de Química Analítica/métodos , Desenho de Equipamento , Análise de Alimentos , Umidade , Modelos Lineares
2.
Heliyon ; 9(4): e14722, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035347

RESUMO

We present a novel approach for extracting metric volume information of fruits and vegetables from short monocular video sequences and associated inertial data recorded with a hand-held smartphone. Estimated segmentation masks from a pre-trained object detector are fused with the predicted change in relative pose obtained from the inertial data to predict the class and volume of the objects of interest. Our approach works with simple RGB video frames and inertial data which are readily available from modern smartphones. It does not require reference objects of known size in the video frames. Using a balanced validation dataset, we achieve a classification accuracy of 95% and a mean absolute percentage error for the volume prediction of 16% on untrained objects, which is comparable to state-of-the-art results requiring more elaborated data recording setups. A very accurate estimation of the model uncertainty is achieved through ensembling and the use of Gaussian negative log-likelihood loss. The dataset used in our experiments including ground-truth volume information is available at https://sst.aau.at/cns/datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA