Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 107(7): 2126-2132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36548923

RESUMO

Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.


Assuntos
Citrullus , Resistência à Doença , Tylenchoidea , Animais , Estudo de Associação Genômica Ampla , Doenças das Plantas
2.
J Nematol ; 51: 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31088021

RESUMO

In turfgrass systems, nematicides are a valuable tool for managing plant-parasitic nematode populations, but few studies have examined nematicide effects on non-target nematodes. The study evaluated effects of turfgrass nematicide formulations of abamectin (Divanem SC), fluopyram (Indemnify), furfural (MultiGuard Protect EC), and fluensulfone (Nimitz Pro G) on non-target nematode populations in bermudagrass (Cynodon spp.). Nematicides were applied at labeled rates every four weeks as a summer treatment program from June 7, 2016 to August 30, 2016 and April 24, 2017 to July 18, 2017. Samples were collected before the initial treatment and 2 d, 14 d, 56 d, and 238 d after the final treatment in both years for nematode community analysis. Data from each nematicide treatment were compared to the untreated at each sample date using analysis of covariance with initial population counts serving as the covariate. Abamectin had moderate impact and fluopyram had substantial impact on the non-target nematodes. Furfural and fluensulfone had minimal impact on non-target nematodes. The results of this study suggest nematicides can impact non-target nematode densities in bermudagrass.In turfgrass systems, nematicides are a valuable tool for managing plant-parasitic nematode populations, but few studies have examined nematicide effects on non-target nematodes. The study evaluated effects of turfgrass nematicide formulations of abamectin (Divanem SC), fluopyram (Indemnify), furfural (MultiGuard Protect EC), and fluensulfone (Nimitz Pro G) on non-target nematode populations in bermudagrass (Cynodon spp.). Nematicides were applied at labeled rates every four weeks as a summer treatment program from June 7, 2016 to August 30, 2016 and April 24, 2017 to July 18, 2017. Samples were collected before the initial treatment and 2 d, 14 d, 56 d, and 238 d after the final treatment in both years for nematode community analysis. Data from each nematicide treatment were compared to the untreated at each sample date using analysis of covariance with initial population counts serving as the covariate. Abamectin had moderate impact and fluopyram had substantial impact on the non-target nematodes. Furfural and fluensulfone had minimal impact on non-target nematodes. The results of this study suggest nematicides can impact non-target nematode densities in bermudagrass.

3.
Ecol Evol ; 14(2): e10905, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343571

RESUMO

Impacts of long-term fertilization and cultivation were evaluated on nematode communities associated with tall fescue turfgrass following 11 years of treatment applications. Fertilizer treatments of biosolid, synthetic, and plant-based fertilizers and cultivation treatments of 0×, 1×, and 2× aerification passes were applied to randomized and replicated tall fescue plots at the University of Maryland Paint Branch Turfgrass facility in College Park, Maryland. Free-living and plant-parasitic nematodes were identified, enumerated, and categorized into functional groups. Nematode count data were compared using generalized linear mixed modeling with negative binomial distribution and two-way ANOVA was used to compare nematode ecological indices. Biosolid treatments resulted in lower omnivore-predator densities than plant-based fertilizer treatments (p ≤ .001) and significantly greater Hoplolaimus densities than plant-based fertilizer plots (p ≤ .05). Synthetic fertilizer applications resulted in the greatest Eucephalobus (p ≤ .05) and total bacterivore densities (p ≤ .001) of all fertilizer treatments. Plant-based fertilizer-treated plots had the largest Maturity Index cp 2-5 and Structure Index (p ≤ .05). Cultivation of 1× resulted in fewer total bacterivore densities than 2× (p ≤ .01) while omnivore-predator densities were greater in 1× than 0× (p ≤ .001). Plant health, as measured by NDVI, was lowest in biosolid-treated turfgrass (p ≤ .05). These findings suggest that long-term turfgrass management practices can have variable impacts on nematode abundance and community structure in tall fescue and provide insights into ecological impacts of turfgrass management practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA