Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(5): 3015-3026, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717207

RESUMO

Sound speed is a critical parameter in ocean acoustic studies, as it determines the propagation and interpretation of recorded sounds. The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon the underwater radiated noise of moving vessels measured by a single hydrophone, is proposed. The dataset used for this study consists of Automatic Identification System data and acoustic recordings of maritime vessels transiting through the Santa Barbara Channel between January 2015 and December 2017. The acoustic recordings and vessel descriptors are used as predictors for regressing sound speed for each meter in the top 200 m of the water column, where sound speeds are most variable. Multiple (typically ranging between 4 and 10) transits were recorded each day; therefore, this dataset provides an opportunity to investigate whether multiple acoustic observations can be leveraged together to improve inversion estimates. The proposed single-transit and multi-transit models resulted in depth-averaged root-mean-square errors of 1.79 and 1.55 m/s, respectively, compared to the seasonal average predictions of 2.80 m/s.

2.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35048927

RESUMO

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Assuntos
Atmosfera , Água do Mar , Aerossóis/química , Atmosfera/química , Oceanos e Mares , Fitoplâncton , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA