RESUMO
BACKGROUND: The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. RESULTS: We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, ß-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to ß-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. CONCLUSION: Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development.
Assuntos
Receptores Odorantes , Spodoptera , Animais , Larva , Receptores Odorantes/genética , Olfato , Spodoptera/genéticaRESUMO
BACKGROUND: Deciphering the molecular mechanisms mediating the chemical senses, taste, and smell has been of vital importance for understanding the nature of how insects interact with their chemical environment. Several gene families are implicated in the uptake, recognition, and termination of chemical signaling, including binding proteins, chemosensory receptors and degrading enzymes. The cotton leafworm, Spodoptera littoralis, is a phytophagous pest and current focal species for insect chemical ecology and neuroethology. RESULTS: We produced male and female Illumina-based transcriptomes from chemosensory and non-chemosensory tissues of S. littoralis, including the antennae, proboscis, brain and body carcass. We have annotated 306 gene transcripts from eight gene families with known chemosensory function, including 114 novel candidate genes. Odorant receptors responsive to floral compounds are expressed in the proboscis and may play a role in guiding proboscis probing behavior. In both males and females, expression of gene transcripts with known chemosensory function, including odorant receptors and pheromone-binding proteins, has been observed in brain tissue, suggesting internal, non-sensory function for these genes. CONCLUSIONS: A well-curated set of annotated gene transcripts with putative chemosensory function is provided. This will serve as a resource for future chemosensory and transcriptomic studies in S. littoralis and closely related species. Collectively, our results expand current understanding of the expression patterns of genes with putative chemosensory function in insect sensory and non-sensory tissues. When coupled with functional data, such as the deorphanization of odorant receptors, the gene expression data can facilitate hypothesis generation, serving as a substrate for future studies.
Assuntos
Proteínas de Insetos/genética , Spodoptera/genética , Animais , Antenas de Artrópodes/metabolismo , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/genética , Esterases/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Proteínas de Insetos/metabolismo , Masculino , Família Multigênica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Spodoptera/enzimologia , Spodoptera/metabolismo , Spodoptera/fisiologia , Percepção GustatóriaRESUMO
BACKGROUND: Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. RESULTS: We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. CONCLUSION: The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
Assuntos
Comunicação Animal , Quimiotaxia , Drosophila melanogaster/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Feromônios/fisiologia , Receptores Odorantes/fisiologia , Alcadienos/metabolismo , Animais , Feminino , Atrativos Sexuais/fisiologia , Especificidade da EspécieRESUMO
Insects rely mainly on their well-developed and highly sophisticated olfactory system to discriminate volatile cues released from host and nonhost substances, mates, oviposition substrates, and food sources. Onset of first mating, mating duration, and onset of first oviposition, oviposition period, fecundity (number of eggs laid by a female), and longevity of freshly emerged Musca domestica L. (Diptera: Muscidae) adults were observed in the presence of different animal manures: cow, horse, donkey, poultry, and an artificial diet. The M. domestica adults exposed to horse manure showed a delay in onset of first mating and first oviposition, prolonged mating duration, and reduced fecundity compared to the artificial diet (control). Likewise, the fecundity was reduced in the presence of donkey manure as compared to artificial diet. The onset of first mating was delayed and duration of first mating was shortened in the presence of cow manure as compared to artificial diet and no oviposition was observed throughout the duration of the experiment. However, the reproductive behaviors and all fitness measures in adults exposed to poultry manure were similar or even better, compared to the artificial diet. Surprisingly, in a free-choice attraction assay, the highest numbers of adult flies were attracted toward the cow manure as compared to all other manures as well as the artificial diet. However, the numbers of flies captured in all other types of manures were not different than the artificial diet (control). Furthermore, chemical analysis of headspace samples of manures revealed qualitative differences in odor (volatile) profiles of all manures and artificial diet, indicating that behavioral differences could be due to the differences in the volatile chemistry of the adult ovipositional substrates and larval growth mediums. This study may contribute toward both understanding the linkage between ecological adaptations and host selection mechanisms and the development of pest management strategies against this serious pest of medical and veterinary importance.
Assuntos
Moscas Domésticas/crescimento & desenvolvimento , Esterco/parasitologia , Animais , Bovinos , Comportamento Alimentar , Feminino , Fertilidade , Cavalos , Larva , Longevidade , Masculino , Oviposição , Reprodução , Especificidade da EspécieRESUMO
As large cities begin to overrun their landfill capacities, they begin to look for alternative locations to handle the waste stream. Seeing an opportunity to bring in revenue, rural communities offer to handle municipal waste in their landfills. However, many rural communities are also places of agricultural production, which are vulnerable to attacks by invasive insect species, which could be present in green yard waste, the component of municipal waste most likely to contain agriculturally harmful insect species. We used environmental DNA (eDNA) to determine whether green yard waste could be a pathway for invasive insect species to enter and establish in the landfill-receiving agricultural community. We identified several target species that could be in green yard waste coming from Vancouver, BC, Canada, to Central Washington State, USA. We sampled green yard waste from 3 sites every 2 weeks from June to October in 2019 and 2020. DNA was extracted from the nearly 400 samples and subjected to amplification with COI barcoding primers followed by sequencing to identify target insects in the samples. Sequence analyses identified 3 species from the target list: 2 species that are pests of deciduous tree fruits and a generalist root-feeding crop pest. This eDNA technique was useful in identifying potential invasive species in green yard waste and may prove to be an important tool informing policy on the movement of biological material across borders and stemming the spread of invasive species.
Assuntos
DNA Ambiental , Espécies Introduzidas , Animais , DNA Ambiental/análise , Washington , Insetos/genética , Colúmbia Britânica , Instalações de Eliminação de Resíduos , Código de Barras de DNA TaxonômicoRESUMO
Phytoplasmas can negatively or positively alter vector host fitness. "Candidatus Phytoplasma pyri," is the causal agent of pear decline in commercial pear (Pyrus communis L.; Rosales: Rosaceae) and peach yellow leafroll in peach [Prunus persica (L.); Rosaceae]. This plant pathogen is transmitted by several species of pear psyllids (Cacopsylla spp. Hemiptera: Psyllidae). We sought to explore the relationship between the pear decline phytoplasma and its US vector, Cacopsylla pyricola (Förster), at the molecular genetic level through transcriptomic analysis using RNA-sequencing methodology. We also focused on phytoplasma and insect effectors, which are secreted proteins that can modulate interactions within a pathosystem. In this study, we identified 30 differentially expressed genes, 14 candidate insect effector genes, and 8 Ca. Phytoplasma pyri candidate effectors. Two strains of Ca. Phytoplasma pyri were identified based on immunodominant membrane protein sequence analysis from C. pyricola collected in the Pacific Northwest agricultural region. Here, we present a first genetic look at the pear decline pathosystem and report gene candidates for further exploration of infection mechanisms and potential tools for integrated pest management.
Assuntos
Hemípteros , Phytoplasma , Doenças das Plantas , Pyrus , Animais , Hemípteros/microbiologia , Hemípteros/genética , Phytoplasma/fisiologia , Pyrus/microbiologia , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Insetos Vetores/microbiologia , TranscriptomaRESUMO
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Assuntos
Drosophila , Transcriptoma , Feminino , Masculino , Animais , Drosophila/genética , Drosophila/metabolismo , Larva/genética , Drosophila melanogaster/genética , Perfilação da Expressão GênicaRESUMO
Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.
Assuntos
Hemípteros , Phytoplasma , Masculino , Animais , Hemípteros/genética , Phytoplasma/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologiaRESUMO
For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.
Assuntos
Arecaceae/parasitologia , Sequenciamento do Exoma/métodos , Genes de Insetos/genética , Estudos de Associação Genética/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Olfato/genética , Gorgulhos/genética , Gorgulhos/fisiologia , Animais , Ásia , Europa (Continente) , América do Norte , Controle Biológico de Vetores/métodosRESUMO
Three genes encoding polygalacturonase (PG) have been identified in Lygus lineolaris (Palisot de Beauvois) (Miridae: Hemiptera). Earlier studies showed that the three PG gene transcripts are exclusively expressed in the feeding stages of L. lineolaris. In this report, it is shown that all three transcripts are specifically expressed in salivary glands indicating that PGs are salivary enzymes. Transcriptional profiles of the three PGs were evaluated with respect to diet, comparing live cotton plant material to artificial diet. PG2 transcript levels were consistently lower in cotton-fed insects than those reared on artificial diet. RNA interference was used to knock down expression of PG1 mRNA in adult salivary glands providing the first demonstration of the use of this method in the non-model insect, L. lineolaris.
Assuntos
Dieta , Heterópteros/genética , Poligalacturonase/genética , Glândulas Salivares/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Gossypium , Heterópteros/metabolismo , Dados de Sequência Molecular , Poligalacturonase/metabolismo , Reação em Cadeia da Polimerase , Interferência de RNA , Análise de Sequência de DNARESUMO
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
RESUMO
Insect chemical ecology (ICE) evolved as a discipline concerned with plant-insect interactions, and also with a strong focus on intraspecific pheromone-mediated communication. Progress in this field has rendered a more complete picture of how insects exploit chemical information in their surroundings in order to survive and navigate their world successfully. Simultaneously, this progress has prompted new research questions about the evolution of insect chemosensation and related ecological adaptations, molecular mechanisms that mediate commonly observed behaviors, and the consequences of chemically mediated interactions in different ecosystems. Themed meetings, workshops, and summer schools are ideal platforms for discussing scientific advancements as well as identifying gaps and challenges within the discipline. From the 11th to the 22nd of June 2018, the 11th annual PhD course in ICE was held at the Swedish University of Agricultural Sciences (SLU) Alnarp, Sweden. The course was made up of 35 student participants from 22 nationalities (Fig. 1a) as well as 32 lecturers. Lectures and laboratory demonstrations were supported by literature seminars, and four broad research areas were covered: (1) multitrophic interactions and plant defenses, (2) chemical communication focusing on odor sensing, processing, and behavior, (3) disease vectors, and (4) applied aspects of basic ICE research in agriculture. This particular article contains a summary and brief synthesis of these main emergent themes and discussions from the ICE 2018 course. In addition, we also provide suggestions on teaching the next generation of ICE scientists, especially during unprecedented global situations.
RESUMO
Incorporation of semiochemicals into codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), IPM programs has drastically reduced the amount of chemical insecticides needed to control this orchard pest. Odorant receptors are key sensors in the detection of semiochemicals and trigger downstream signaling events leading to behavioral responses. For codling moth, 58 odorant receptors have been identified in antennal transcriptomes, a few of which have been characterized for ligand activation. From the codling moth antennal transcriptome, a single transcript encoding CpomOR53 was annotated but re-evaluation suggests two or more variants of this receptor may be present and it is hypothesized that they are produced by alternative splicing. In this study, the complete open reading frame of CpomOR53 was amplified from codling moth male and female antennal RNAs, with three distinct transcripts detected. Characterization of these transcripts indicate that they are produced by alternative splicing of the CpomOR53 gene. The membrane topology for each of the CpomOR53 variants shows that alternative spliced products altered the length of intracellular loop two of the predicted proteins. The effects of these alterations were not determined but will be addressed in future studies determining the ligand(s) that activate each CpomOR53 transcript variant.
Assuntos
Inseticidas , Mariposas , Receptores Odorantes , Processamento Alternativo , Animais , Feminino , Genes de Insetos , Masculino , Receptores Odorantes/genéticaRESUMO
Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.
Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Receptores de Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Drosophila/genética , Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Insetos/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Masculino , Mariposas/genética , Receptores Odorantes , Receptores de Feromônios/classificação , Receptores de Feromônios/genética , Spodoptera/genética , Spodoptera/metabolismo , Transcriptoma , Xenopus/genética , Xenopus/metabolismoRESUMO
Insect sensory arrestins act to desensitize visual and olfactory signal transduction pathways, as evidenced by the phenotypic effects of mutations in the genes encoding both Arr1 and Arr2 in Drosophila melanogaster. To assess whether such arrestins play similar roles in other, more medically relevant dipterans, we examined the ability of Anopheles gambiae sensory arrestin homologs AgArr1 and AgArr2 to rescue phenotypes associated with an olfactory deficit observed in D. melanogaster arrestin mutants. Of these, only AgArr1 facilitated significant phenotypic rescue of the corresponding Drosophila arr mutant olfactory phenotype, consistent with the view that functional orthology is shared by these Arr1 homologs. These results represent the first step in the functional characterization of AgArr1, which is highly expressed in olfactory appendages of An. gambiae in which it is likely to play an essential role in olfactory signal transduction. In addition to providing insight into the common elements of the peripheral olfactory system of dipterans, this work validates the importance of AgArr1 as a potential target for novel anti-malaria strategies that focus on olfactory-based behaviors in An. gambiae.
Assuntos
Anopheles/metabolismo , Arrestina/metabolismo , Proteínas de Insetos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Anopheles/química , Anopheles/genética , Arrestina/química , Arrestina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrofisiologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Condutos Olfatórios/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de SequênciaRESUMO
Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones.
Assuntos
Antenas de Artrópodes/fisiologia , Mariposas/fisiologia , Receptores Odorantes/genética , Transcriptoma , Animais , Sinais (Psicologia) , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mariposas/classificação , Razão de Chances , Filogenia , Olfato/genéticaRESUMO
Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.
Assuntos
Decanoatos/farmacologia , Proteínas de Insetos/agonistas , Mariposas/metabolismo , Feromônios/farmacologia , Receptores de Feromônios/agonistas , Animais , Linhagem Celular , Dodecanol/análogos & derivados , Drosophila/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Receptores de Feromônios/metabolismoRESUMO
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Olfato , Spodoptera/fisiologia , Potenciais de Ação , Animais , Relação Dose-Resposta a Droga , Drosophila , Feminino , Funções Verossimilhança , Masculino , Modelos Estatísticos , Odorantes , FilogeniaRESUMO
Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies.