Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 402 Suppl 1: S92, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997139

RESUMO

BACKGROUND: Age-related neurological conditions can result in poor mobility typified by gait abnormalities and falls, increasing risk of frailty and lowering quality of life. In the UK, the expense and inaccessibility of services to improve mobility through gait training (eg, auditory cueing) is a public health issue. Contemporary and scalable pervasive technologies for widespread public use could provide an affordable and accessible solution. We aimed to show the preliminary efficacy of a novel smartphone app that provides a personalised approach to mobility and gait assessment while facilitating gait training. METHODS: In this experimental study, we recruited participants aged 22-46 years with no physical functional impairments (ie, no age-related neurological condition and who could walk unaided) from Northumbria University staff (Newcastle upon Tyne, UK) between April 19, and May 26. Participants wore a smartphone on their lower back. Inertial data from the smartphone were recorded during two walks, one at a self-selected pace and the other with a personalised auditory cue via headphones (+10% pace on walk 1). Smartphone app functionality enabled the measurement of clinically relevant gait characteristics via a Python-based Cloud server. We compared smartphone-based mobility or gait characteristics with a gold-standard reference (Opal Mobility Lab, APDM). We used Pearson and intraclass correlation coefficients (ICC2,1) to examine agreement between the novel app and reference. The study ran from April 4 to July 21, 2023. This study received ethics approval from the Northumbria University Ethics committee, and all participants provided written informed consent. FINDINGS: Ten adults were recruited (six women and four men; mean age 27·4 years [SD 6·2], mean weight 79·6 kg [SD 12·7], mean height 174·7 cm [SD 7·9]). High levels of agreement were found between the smartphone app and reference, quantified by Pearson (≥0·858) and ICC values (≥0·911). The personalised cueing intervention increased the mean cadence by an average of 11%, which shows good participant adherence to cueing via an app. INTERPRETATION: Here, we propose a contemporary approach to increase the accessibility to a health-based intervention. Preliminary findings suggest the smartphone app is a suitable tool for personalised mobility or gait assessment while facilitating gait training. Use of a scalable app could be an accessible and affordable method for improving mobility to reduce falls in the home. Here, current limitations are the lack of investigation with the smartphone app for neurological gait assessment on older adults and the lack of information on participants app experience, but this will be included in future work. The pervasive use of smartphones enables a decentralised approach to overcoming issues such as frailty and logistical challenges of travelling to bespoke clinics. FUNDING: National Institute of Health and Care Research (NIHR) Applied Research Collaboration (ARC) North-East and North Cumbria (NENC); Faculty of Engineering and Environment at Northumbria University.


Assuntos
Fragilidade , Aplicativos Móveis , Masculino , Humanos , Feminino , Idoso , Adulto , Qualidade de Vida , Smartphone , Marcha
2.
Sensors (Basel) ; 24(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202926

RESUMO

Mobility challenges threaten physical independence and good quality of life. Often, mobility can be improved through gait rehabilitation and specifically the use of cueing through prescribed auditory, visual, and/or tactile cues. Each has shown use to rectify abnormal gait patterns, improving mobility. Yet, a limitation remains, i.e., long-term engagement with cueing modalities. A paradigm shift towards personalised cueing approaches, considering an individual's unique physiological condition, may bring a contemporary approach to ensure longitudinal and continuous engagement. Sonification could be a useful auditory cueing technique when integrated within personalised approaches to gait rehabilitation systems. Previously, sonification demonstrated encouraging results, notably in reducing freezing-of-gait, mitigating spatial variability, and bolstering gait consistency in people with Parkinson's disease (PD). Specifically, sonification through the manipulation of acoustic features paired with the application of advanced audio processing techniques (e.g., time-stretching) enable auditory cueing interventions to be tailored and enhanced. These methods used in conjunction optimize gait characteristics and subsequently improve mobility, enhancing the effectiveness of the intervention. The aim of this narrative review is to further understand and unlock the potential of sonification as a pivotal tool in auditory cueing for gait rehabilitation, while highlighting that continued clinical research is needed to ensure comfort and desirability of use.


Assuntos
Doença de Parkinson , Qualidade de Vida , Humanos , Marcha , Acústica , Sinais (Psicologia)
3.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35898070

RESUMO

Medical audio classification for lung abnormality diagnosis is a challenging problem owing to comparatively unstructured audio signals present in the respiratory sound clips. To tackle such challenges, we propose an ensemble model by incorporating diverse deep neural networks with attention mechanisms for undertaking lung abnormality and COVID-19 diagnosis using respiratory, speech, and coughing audio inputs. Specifically, four base deep networks are proposed, which include attention-based Convolutional Recurrent Neural Network (A-CRNN), attention-based bidirectional Long Short-Term Memory (A-BiLSTM), attention-based bidirectional Gated Recurrent Unit (A-BiGRU), as well as Convolutional Neural Network (CNN). A Particle Swarm Optimization (PSO) algorithm is used to optimize the training parameters of each network. An ensemble mechanism is used to integrate the outputs of these base networks by averaging the probability predictions of each class. Evaluated using respiratory ICBHI, Coswara breathing, speech, and cough datasets, as well as a combination of ICBHI and Coswara breathing databases, our ensemble model and base networks achieve ICBHI scores ranging from 0.920 to 0.9766. Most importantly, the empirical results indicate that a positive COVID-19 diagnosis can be distinguished to a high degree from other more common respiratory diseases using audio recordings, based on the combined ICBHI and Coswara breathing datasets.


Assuntos
COVID-19 , Algoritmos , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pulmão , Redes Neurais de Computação
4.
PLoS One ; 17(9): e0274395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170287

RESUMO

Mild traumatic brain injury (mTBI or concussion) is receiving increased attention due to the incidence in contact sports and limitations with subjective (pen and paper) diagnostic approaches. If an mTBI is undiagnosed and the athlete prematurely returns to play, it can result in serious short-term and/or long-term health complications. This demonstrates the importance of providing more reliable mTBI diagnostic tools to mitigate misdiagnosis. Accordingly, there is a need to develop reliable and efficient objective approaches with computationally robust diagnostic methods. Here in this pilot study, we propose the extraction of Mel Frequency Cepstral Coefficient (MFCC) features from audio recordings of speech that were collected from athletes engaging in rugby union who were diagnosed with an mTBI or not. These features were trained on our novel particle swarm optimised (PSO) bidirectional long short-term memory attention (Bi-LSTM-A) deep learning model. Little-to-no overfitting occurred during the training process, indicating strong reliability of the approach regarding the current test dataset classification results and future test data. Sensitivity and specificity to distinguish those with an mTBI were 94.7% and 86.2%, respectively, with an AUROC score of 0.904. This indicates a strong potential for the deep learning approach, with future improvements in classification results relying on more participant data and further innovations to the Bi-LSTM-A model to fully establish this approach as a pragmatic mTBI diagnostic tool.


Assuntos
Concussão Encefálica , Aprendizado Profundo , Atletas , Concussão Encefálica/complicações , Humanos , Projetos Piloto , Reprodutibilidade dos Testes
5.
Front Sports Act Living ; 4: 956889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147582

RESUMO

Gait assessment is essential to understand injury prevention mechanisms during running, where high-impact forces can lead to a range of injuries in the lower extremities. Information regarding the running style to increase efficiency and/or selection of the correct running equipment, such as shoe type, can minimize the risk of injury, e.g., matching a runner's gait to a particular set of cushioning technologies found in modern shoes (neutral/support cushioning). Awareness of training or selection of the correct equipment requires an understanding of a runner's biomechanics, such as determining foot orientation when it strikes the ground. Previous work involved a low-cost approach with a foot-mounted inertial measurement unit (IMU) and an associated zero-crossing-based methodology to objectively understand a runner's biomechanics (in any setting) to learn about shoe selection. Here, an investigation of the previously presented ZC-based methodology is presented only to determine general validity for running gait assessment in a range of running abilities from novice (8 km/h) to experienced (16 km/h+). In comparison to Vicon 3D motion tracking data, the presented approach can extract pronation, foot strike location, and ground contact time with good [ICC(2,1) > 0.750] to excellent [ICC(2,1) > 0.900] agreement between 8-12 km/h runs. However, at higher speeds (14 km/h+), the ZC-based approach begins to deteriorate in performance, suggesting that other features and approaches may be more suitable for faster running and sprinting tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA