Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 560(7717): 179-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046114

RESUMO

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit using the 'AC Stark' effect. Our demonstration of strong qubit-photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

2.
Nature ; 558(7709): 264-267, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899478

RESUMO

Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information5-8. Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

3.
Phys Rev Lett ; 125(26): 260502, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449744

RESUMO

Superconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on demand with average transfer and target state fidelities of 85.8% and 79.5%, respectively, between the two nodes of this elementary network. Cryogenic microwave links provide an opportunity to scale up systems for quantum computing and create local area superconducting quantum communication networks over length scales of at least tens of meters.

4.
Phys Rev Lett ; 123(19): 193201, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765186

RESUMO

We present an experimental realization of single-shot nondestructive detection of ensembles of helium Rydberg atoms. We use the dispersive frequency shift of a superconducting microwave cavity interacting with the ensemble. By probing the transmission of the cavity, we determine the number of Rydberg atoms or the populations of Rydberg quantum states when the ensemble is prepared in a superposition. At the optimal microwave probe power, determined by the critical photon number, we reach single-shot detection of the atom number with 13% relative precision for ensembles of about 500 Rydberg atoms with a measurement backaction characterized by approximately 2% population transfer.

5.
Phys Rev Lett ; 122(21): 213601, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283346

RESUMO

We investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. For a two-electron state the spin-triplet state has a vanishing electric dipole moment and can therefore be distinguished from the spin-singlet state. This way the charge dipole sensitivity of the resonator response is converted to a spin selectivity. We thereby investigate Pauli spin blockade known from transport experiments at finite source-drain bias. In addition we find an unconventional spin-blockade triggered by the absorption of resonator photons.

6.
Phys Rev Lett ; 122(20): 206802, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172788

RESUMO

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation, and Hahn-echo measurements and find significantly reduced decoherence rates down to γ_{2}/2π∼3 MHz corresponding to coherence times of up to T_{2}∼50 ns for charge states in gate-defined quantum dot qubits. We realize Rabi π pulses of width down to σ∼0.25 ns.

7.
Nature ; 500(7462): 319-22, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955231

RESUMO

Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

8.
Nature ; 496(7446): 482-5, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23594739

RESUMO

The geometric aspects of quantum mechanics are emphasized most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a path in Hilbert space, that is, the space of quantum states of the system. The geometric phase is determined only by the shape of this path and is, in its simplest form, a real number. However, if the system has degenerate energy levels, then matrix-valued geometric state transformations, known as non-Abelian holonomies--the effect of which depends on the order of two consecutive paths--can be obtained. They are important, for example, for the creation of synthetic gauge fields in cold atomic gases or the description of non-Abelian anyon statistics. Moreover, there are proposals to exploit non-Abelian holonomic gates for the purposes of noise-resilient quantum computation. In contrast to Abelian geometric operations, non-Abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins, and without full characterization of the geometric process and its non-commutative nature. Here we realize non-Abelian non-adiabatic holonomic quantum operations on a single, superconducting, artificial three-level atom by applying a well-controlled, two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates that exceed 95 per cent. We show that two different quantum gates, originating from two distinct paths in Hilbert space, yield non-equivalent transformations when applied in different orders. This provides evidence for the non-Abelian character of the implemented holonomic quantum operations. In combination with a non-trivial two-quantum-bit gate, our method suggests a way to universal holonomic quantum computing.

9.
Phys Rev Lett ; 121(6): 060502, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141638

RESUMO

Active qubit reset is a key operation in many quantum algorithms, and particularly in quantum error correction. Here, we experimentally demonstrate a reset scheme for a three-level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state in less than 500 ns and with 0.2% residual excitation. Our protocol is of practical interest as it has no additional architectural requirements beyond those needed for fast and efficient single-shot readout of transmons, and does not require feedback.

10.
Phys Rev Lett ; 121(4): 043603, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095954

RESUMO

We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton processes and a fringe pattern similar to Landau-Zener-Stückelberg interference. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on the adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.

11.
Nature ; 481(7380): 170-2, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170609

RESUMO

The Toffoli gate is a three-quantum-bit (three-qubit) operation that inverts the state of a target qubit conditioned on the state of two control qubits. It makes universal reversible classical computation possible and, together with a Hadamard gate, forms a universal set of gates in quantum computation. It is also a key element in quantum error correction schemes. The Toffoli gate has been implemented in nuclear magnetic resonance, linear optics and ion trap systems. Experiments with superconducting qubits have also shown significant progress recently: two-qubit algorithms and two-qubit process tomography have been implemented, three-qubit entangled states have been prepared, first steps towards quantum teleportation have been taken and work on quantum computing architectures has been done. Implementation of the Toffoli gate with only single- and two-qubit gates requires six controlled-NOT gates and ten single-qubit operations, and has not been realized in any system owing to current limits on coherence. Here we implement a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubits, we have significantly reduced the number of elementary gates needed for the implementation of the Toffoli gate, relative to that required in theoretical proposals using only two-level systems. Using full process tomography and Monte Carlo process certification, we completely characterize the Toffoli gate acting on three independent qubits, measuring a fidelity of 68.5 ± 0.5 per cent. A similar approach to realizing characteristic features of a Toffoli-class gate has been demonstrated with two qubits and a resonator and achieved a limited characterization considering only the phase fidelity. Our results reinforce the potential of macroscopic superconducting qubits for the implementation of complex quantum operations with the possibility of quantum error correction.

12.
Phys Rev Lett ; 115(4): 046802, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252704

RESUMO

We explore the microwave radiation emitted from a biased double quantum dot due to the inelastic tunneling of single charges. Radiation is detected over a broad range of detuning configurations between the dot energy levels, with pronounced maxima occurring in resonance with a capacitively coupled transmission line resonator. The power emitted for forward and reverse resonant detuning is found to be in good agreement with a rate equation model, which considers the hybridization of the individual dot charge states.

13.
Phys Rev Lett ; 113(11): 110502, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259964

RESUMO

We demonstrate a coupled cavity realization of a Bose-Hubbard dimer to achieve quantum-limited amplification and to generate frequency entangled microwave fields with squeezing parameters well below -12 dB. In contrast to previous implementations of parametric amplifiers, our dimer can be operated both as a degenerate and as a nondegenerate amplifier. The large measured gain-bandwidth product of more than 250 MHz for the nondegenerate operation and the saturation at input photon numbers as high as 2000 per µs are both expected to be improvable even further, while maintaining wide frequency tunability of about 2 GHz. Featuring flexible control over all relevant system parameters, the presented Bose-Hubbard dimer based on lumped element circuits has significant potential as an elementary cell in nonlinear cavity arrays for quantum simulations.

14.
Nature ; 454(7202): 315-8, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18633413

RESUMO

The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.

15.
Nature ; 449(7161): 443-7, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17898763

RESUMO

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.

16.
Nature ; 445(7127): 515-8, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17268464

RESUMO

Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.

17.
Phys Rev Lett ; 108(26): 260506, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23004949

RESUMO

Experimental implementations of quantum information processing have now reached a level of sophistication where quantum process tomography is impractical. The number of experimental settings as well as the computational cost of the data postprocessing now translates to days of effort to characterize even experiments with as few as 8 qubits. Recently a more practical approach to determine the fidelity of an experimental quantum process has been proposed, where the experimental data are compared directly with an ideal process using Monte Carlo sampling. Here, we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup to determine the fidelity of 2-qubit gates, such as the CPHASE and the CNOT gate, and 3-qubit gates, such as the Toffoli gate and two sequential CPHASE gates.

18.
Phys Rev Lett ; 108(4): 040502, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400817

RESUMO

Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

19.
Phys Rev Lett ; 108(4): 046807, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400878

RESUMO

We demonstrate the realization of a hybrid solid-state quantum device, in which a semiconductor double quantum dot is dipole coupled to the microwave field of a superconducting coplanar waveguide resonator. The double dot charge stability diagram extracted from measurements of the amplitude and phase of a microwave tone transmitted through the resonator is in good agreement with that obtained from transport measurements. Both the observed frequency shift and linewidth broadening of the resonator are explained considering the double dot as a charge qubit coupled with a strength of several tens of MHz to the resonator.

20.
Phys Rev Lett ; 108(6): 063004, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401065

RESUMO

The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state coplanar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 and 38 GHz, have been studied for states with principal quantum numbers in the range 30-35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined. These results represent a key element in the development of an experimental architecture to interface Rydberg atoms with solid-state devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA