Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(3): e2300202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37913549

RESUMO

Infections are still a major cause of morbidity in burn wounds. Although silver has been used strongly in past centuries as an anti-bacterial, it can lead to allergic reactions, bacterial resistance, and delayed wound healing. Iodine-based antibacterials are becoming an interesting alternative. In this work, the effect of complexation with poly(vinyl pyrrolidone) (PVP) and poly(ethylene oxide) (PEO)-based polymers is explored by using different acrylate-endcapped urethane-based poly(ethylene glycol) (AUP) polymers, varying the molar mass (MM) of the poly(ethylene glycol) (PEG) backbone, with possible addition of PVP. The higher MM AUP outperforms the swelling potential of commercial wound dressings such as Kaltostat, Aquacel Ag, and Hydrosorb and all MM show superior mechanical properties. The addition of iodine to the polymers is compared to Iso-Betadine Tulle (IBT). Interestingly, the addition of PVP does not lead to increased iodine complexation compared to the blank AUP polymers, while all have a prolonged iodine release compared to the IBT, which leads to a burst release. The observed prolonged release also leads to larger inhibition zones during antibacterial tests. Complexing iodine in AUP polymers with or without PVP leads to antimicrobial wound dressings which may hold potential for future application to treat infected wounds.


Assuntos
Iodo , Iodo/farmacologia , Uretana , Antibacterianos/farmacologia , Polímeros , Povidona-Iodo/farmacologia , Bandagens , Polietilenoglicóis/farmacologia , Acrilatos , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA