RESUMO
Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the 'drop-cast' method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young's modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young's modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.
RESUMO
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
RESUMO
This study investigates the removal of Pb(II) using polymer matrix membranes, cellulose acetate/vinyl triethoxysilane modified graphene oxide and gum Arabic (GuA) membranes. These complexation-NF membranes were successfully synthesized via dissolution casting method for better transport phenomenon. The varied concentrations of GuA were induced in the polymer matrix membrane. The prepared membranes M-GuA2-M-GuA10 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscope and bio-fouling studies. Thermal stability of the membranes was determined by thermogravimetric analysis under nitrogen atmosphere. Dead end nanofiltration was carried out to study the perm- selectivity of all the membranes under varied pressure and concentration of Pb(NO3)2. The complexation-NF membrane performances were significantly improved after the addition of GuA in the polymer matrix membrane system. M-GuA8 membrane showed optimum result of permeation flux 8.6 l m-2 h-1. Rejection of Pb(II) ions was observed to be around 97.6% at pH 9 for all the membranes due to electrostatic interaction between CA and Gum Arabic. Moreover, with the passage of time, the rate of adsorption was also increased up to 15.7 mg g-1 until steady state was attained. Gum Arabic modified CA membranes can open up new possibilities in enhancing the permeability, hydrophilicity and anti-fouling properties.
RESUMO
This paper reports the oxidation of Remazol black B dye by employing iron ions catalyst based gas diffusion cathodes, (GDCs). A GDC was synthesized by using a layer of carbon black and iron ions catalyst for oxygen reduction to hydrogen peroxide. The results demonstrated around 97% decolorization of Remazol black-B dye for 50 min by iron ions catalyst based GDC. The degradation study was performed under electrogenerated hydrogen peroxide at a constant voltage of - 0.6 V vs Hg/HgSO4 in which the rate of degradation was correlated with hydrogen peroxide production. Overall, the GDC's found to be effective method to degrade the dyes via electro-Fenton.
RESUMO
This review considers the literature published since 1994 on microbial and enzymatic biofuel cells. Types of biofuel cell are classified according to the nature of the electrode reaction and the nature of the biochemical reactions. The performance of fuel cells is critically reviewed and a variety of possible applications is considered. The current direction of development of biofuel cells is carefully analysed. While considerable chemical development of enzyme electrodes has occurred, relatively little progress has been made towards the engineering development biofuel cells. The limit of performance of biofuel cells is highlighted and suggestions for future research directions are provided.
Assuntos
Bactérias , Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletroquímica , Bactérias/metabolismo , Fontes de Energia Bioelétrica/tendências , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Eletroquímica/métodos , Eletroquímica/tendências , Enzimas ImobilizadasRESUMO
The performance of man-made materials can be improved by exploring new structures inspired by the architecture of biological materials. Natural materials, such as nacre (mother-of-pearl), can have outstanding mechanical properties due to their complicated architecture and hierarchical structure at the nano-, micro- and meso-levels which have evolved over millions of years. This review describes the numerous experimental methods explored to date to produce composites with structures and mechanical properties similar to those of natural nacre. The materials produced have sizes ranging from nanometres to centimetres, processing times varying from a few minutes to several months and a different range of mechanical properties that render them suitable for various applications. For the first time, these techniques have been divided into those producing bulk materials, coatings and free-standing films. This is due to the fact that the material's application strongly depends on its dimensions and different results have been reported by applying the same technique to produce materials with different sizes. The limitations and capabilities of these methodologies have been also described.
Assuntos
Materiais Biomiméticos/síntese química , Moluscos/química , Nácar/síntese química , Animais , Teste de MateriaisRESUMO
Recent developments in bio-fuel cell technology are reviewed. A general introduction to bio-fuel cells, including their operating principles and applications, is provided. New materials and methods for the immobilisation of enzymes and mediators on electrodes, including the use of nanostructured electrodes are considered. Fuel, mediator and enzyme materials (anode and cathode), as well as cell configurations are discussed. A detailed summary of recently developed enzymatic fuel cell systems, including performance measurements, is conveniently provided in tabular form. The current scientific and engineering challenges involved in developing practical bio-fuel cell systems are described, with particular emphasis on a fundamental understanding of the reaction environment, the performance and stability requirements, modularity and scalability. In a companion review (Part II), new developments in microbial fuel cell technologies are reviewed in the context of fuel sources, electron transfer mechanisms, anode materials and enhanced O(2) reduction.
Assuntos
Fontes de Energia Bioelétrica/tendências , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Animais , Bactérias/enzimologia , Fungos/enzimologia , Plantas/enzimologiaRESUMO
Recent key developments in microbial fuel cell technology are reviewed. Fuel sources, electron transfer mechanisms, anode materials and enhanced O(2) reduction are discussed in detail. A summary of recently developed microbial fuel cell systems, including performance measurements, is conveniently provided in tabular form. The current challenges involved in developing practical bio-fuel cell systems are described, with particular emphasis on a fundamental understanding of the reaction environment, the performance and stability requirements, modularity and scalability. This review is the second part of a review of bio-fuel cells. In Part 1 a general introduction to bio-fuel cells, including their operating principles and applications, was provided and enzymatic fuel cell technology was reviewed.
Assuntos
Fontes de Energia Bioelétrica/microbiologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia/tendências , Catálise , Transporte de Elétrons , Desenho de Equipamento , Oxirredução , Oxigênio/metabolismoRESUMO
Mathematical modelling of the oxidation reduction redox potential (ORP) of an electrolyte has been carried out for a batch system comprising an electrochemical reactor and an electrolyte circuit containing a redox couple. The ORP can be useful to monitor the environmental impact of chemical species in solution that represent a risk to the environment. Considerations of four fundamental equations, namely, the Nernst equation, a mass balance, Faraday's laws of electrolysis and a first order kinetic equation, leads to an expression for the electrolyte redox potential as a function of the batch time, the electrical charge and the redox concentration. Such an expression facilitates graphical plots which can be used to estimate kinetic parameters, current efficiency and the relative redox concentration. The Ce(IV)/Ce(III) system has been chosen as a model reaction for electrolyte redox potential measurement in a batch recycle system consisting of a pumped flow through a divided FM01-LC parallel-plate electrochemical reactor (64 cm(2) projected electrode area) and a well mixed tank (3,600 cm(3)). The differences between experimental and model predictions are discussed.