Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 317: 85-97, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16264223

RESUMO

A high-throughput approach to prokaryotic differential display has been developed. A large number of reverse transcription polymerase chain reactions (RT-PCR) are performed on total RNA isolated from induced and control bacterial cultures. Each RT-PCR reaction uses a single oligonucleotide primer and constitutes an independent sampling of the mRNA population. The large number of reactions performed allows the repeated sampling of the targeted polycistronic mRNA, which is clearly identified among possible false positives.


Assuntos
Primers do DNA/química , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Automação , Clonagem Molecular , DNA/química , DNA Complementar , Expressão Gênica , Modelos Genéticos , Células Procarióticas/metabolismo , RNA/química , RNA Mensageiro/metabolismo , RNA Ribossômico/química , Moldes Genéticos , Transcrição Gênica
2.
Mol Plant Pathol ; 6(6): 653-7, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20565687

RESUMO

SUMMARY The DF signal molecule regulates the production of both yellow pigments (xanthomonadins) and extracellular polysaccharide (EPS) in Xanthomonas campestris pv. campestris. These two bacterial products are crucial to the epiphytic survival and pathogenicity of this pathogen on its plant hosts. Previous work suggested that DF is a butyrolactone, which the Streptomyces bacteria are known to utilize as signals. pigB is one of seven transcriptional units in the X. c. pv. campestris xanthomonadin gene cluster, and its inactivation results in the loss of DF signal, xanthomonadin and EPS production. Here, determination and analysis of the pigB DNA sequence reveals the presence of two open reading frames, the first (xanB1) encoding a putative reductase/halogenase, and the second (xanB2) showing the highest level of identity to Streptomyces genes encoding putative pteridine-dependent dioxygenase-like proteins. We show that xanB2 (but not xanB1) is needed for production of the DF signal, and that some Streptomyces strains produce functional analogues of DF. A role for xanB2 in the biosynthesis of DF is proposed.

3.
Environ Microbiol ; 7(2): 179-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15658985

RESUMO

High-throughput mRNA differential display (DD) was used to identify genes induced by cyclohexane in Brachymonas petroleovorans CHX, a recently isolated beta-proteobacterium that grows on cyclohexane. Two metabolic gene clusters were identified multiple times in independent reverse transcription polymerase chain reactions (RT-PCR) in the course of this DD experiment. These clusters encode genes believed to be required for cyclohexane metabolism. One gene cluster (8 kb) encodes the subunits of a multicomponent hydroxylase related to the soluble butane of Pseudomonas butanovora and methane monooxygenases (sMMO) of methanotrophs. We propose that this butane monooxygenase homologue carries out the oxidation of cyclohexane into cyclohexanol during growth. A second gene cluster (11 kb) contains almost all the genes required for the oxidation of cyclohexanol to adipic acid. Real-time PCR experiments confirmed that genes from both clusters are induced by cyclohexane. The role of the Baeyer-Villiger cyclohexanone monooxygenase of the second cluster was confirmed by heterologous expression in Escherichia coli.


Assuntos
Comamonadaceae/metabolismo , Cicloexanos/metabolismo , Oxigenases/genética , Adipatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Comamonadaceae/enzimologia , Comamonadaceae/crescimento & desenvolvimento , Cicloexanóis/metabolismo , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Oxigenases/fisiologia , Filogenia , Reação em Cadeia da Polimerase , Pseudomonas/genética , RNA Bacteriano/análise , RNA Mensageiro/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
4.
Appl Environ Microbiol ; 69(1): 334-42, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12514013

RESUMO

mRNA differential display has been used to identify cyclohexanone oxidation genes in a mixed microbial community derived from a wastewater bioreactor. Thirteen DNA fragments randomly amplified from the total RNA of an enrichment subculture exposed to cyclohexanone corresponded to genes predicted to be involved in the degradation of cyclohexanone. Nine of these DNA fragments are part of genes encoding three distinct Baeyer-Villiger cyclohexanone monooxygenases from three different bacterial species present in the enrichment culture. In Arthrobacter sp. strain BP2 and Rhodococcus sp. strain Phi2, the monooxygenase is part of a gene cluster that includes all the genes required for the degradation of cyclohexanone, while in Rhodococcus sp. strain Phi1 the genes surrounding the monooxygenase are not predicted to be involved in this degradation pathway but rather seem to belong to a biosynthetic pathway. Furthermore, in the case of Arthrobacter strain BP2, three other genes flanking the monooxygenase were identified by differential display, demonstrating that the repeated sampling of bacterial operons shown earlier for a pure culture (D. M. Walters, R. Russ, H. Knackmuss, and P. E. Rouvière, Gene 273:305-315, 2001) is also possible for microbial communities. The activity of the three cyclohexanone monooxygenases was confirmed and characterized following their expression in Escherichia coli.


Assuntos
Arthrobacter/enzimologia , Ecossistema , Perfilação da Expressão Gênica , Oxigenases/genética , Rhodococcus/enzimologia , Arthrobacter/genética , Arthrobacter/crescimento & desenvolvimento , Reatores Biológicos , Meios de Cultura , Cicloexanonas/metabolismo , Dados de Sequência Molecular , Oxigenases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhodococcus/genética , Rhodococcus/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos
5.
Microbiology (Reading) ; 148(Pt 3): 799-806, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11882715

RESUMO

Rhodococcus (opacus) erythropolis HL PM-1 grows on 2,4,6-trinitrophenol (picric acid) or 2,4-dinitrophenol (2,4-DNP) as sole nitrogen source. A gene cluster involved in picric acid degradation was recently identified. The functional assignment of three of its genes, npdC, npdG and npdI, and the tentative functional assignment of a fourth one, npdH, is reported. The genes were expressed in Escherichia coli as His-tag fusion proteins that were purified by Ni-affinity chromatography. The enzyme activity of each protein was determined by spectrophotometry and HPLC analyses. NpdI, a hydride transferase, catalyses a hydride transfer from reduced F420 to the aromatic ring of picric acid, generating the hydride sigma-complex (hydride Meisenheimer complex) of picric acid (H(-)-PA). Similarly, NpdI also transformed 2,4-DNP to the hydride sigma-complex of 2,4-DNP. A second hydride transferase, NpdC catalysed a subsequent hydride transfer to H(-)-PA, to produce a dihydride sigma-complex of picric acid (2H(-)-PA). All three reactions required the activity of NpdG, an NADPH-dependent F420 reductase, for shuttling the hydride ions from NADPH to F420. NpdH converted 2H(-)-PA to a hitherto unknown product, X. The results show that npdC, npdG and npdI play a key role in the initial steps of picric acid degradation, and that npdH may prove to be important in the later stages.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Picratos/metabolismo , Rhodococcus/enzimologia , Dados de Sequência Molecular , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Rhodococcus/genética , Transferases/genética , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA