Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2121037119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512092

RESUMO

Studies from a variety of species indicate that arginine­vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9­mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.


Assuntos
Sistemas CRISPR-Cas , Receptores de Vasopressinas , Agressão/fisiologia , Animais , Arginina/metabolismo , Arginina Vasopressina/genética , Cricetinae , Mesocricetus , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Comportamento Social
2.
J Neurosci Res ; 101(10): 1586-1610, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314006

RESUMO

Aging is associated with cognitive decline and is the main risk factor for a myriad of conditions including neurodegeneration and stroke. Concomitant with aging is the progressive accumulation of misfolded proteins and loss of proteostasis. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and activation of the unfolded protein response (UPR). The UPR is mediated, in part, by the eukaryotic initiation factor 2α (eIF2α) kinase protein kinase R-like ER kinase (PERK). Phosphorylation of eIF2α reduces protein translation as an adaptive mechanism but this also opposes synaptic plasticity. PERK, and other eIF2α kinases, have been widely studied in neurons where they modulate both cognitive function and response to injury. The impact of astrocytic PERK signaling in cognitive processes was previously unknown. To examine this, we deleted PERK from astrocytes (AstroPERKKO ) and examined the impact on cognitive functions in middle-aged and old mice of both sexes. Additionally, we tested the outcome following experimental stroke using the transient middle cerebral artery occlusion (MCAO) model. Tests of short-term and long-term learning and memory as well as of cognitive flexibility in middle-aged and old mice revealed that astrocytic PERK does not regulate these processes. Following MCAO, AstroPERKKO had increased morbidity and mortality. Collectively, our data demonstrate that astrocytic PERK has limited impact on cognitive function and has a more prominent role in the response to neural injury.


Assuntos
Astrócitos , Aprendizagem , Acidente Vascular Cerebral , eIF-2 Quinase , Animais , Feminino , Masculino , Camundongos , Retículo Endoplasmático , Proteínas Quinases , eIF-2 Quinase/metabolismo
3.
BMC Biol ; 20(1): 142, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705939

RESUMO

BACKGROUND: Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS: Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS: Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.


Assuntos
Biologia , Ritmo Circadiano , Animais , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302582

RESUMO

For many individuals in industrialized nations, the widespread adoption of electric lighting has dramatically affected the circadian organization of physiology and behavior. Although initially assumed to be innocuous, exposure to artificial light at night (ALAN) is associated with several disorders, including increased incidence of cancer, metabolic disorders, and mood disorders. Within this review, we present a brief overview of the molecular circadian clock system and the importance of maintaining fidelity to bright days and dark nights. We describe the interrelation between core clock genes and the cell cycle, as well as the contribution of clock genes to oncogenesis. Next, we review the clinical implications of disrupted circadian rhythms on cancer, followed by a section on the foundational science literature on the effects of light at night and cancer. Finally, we provide some strategies for mitigation of disrupted circadian rhythms to improve health.


Assuntos
Carcinogênese/metabolismo , Ritmo Circadiano , Neoplasias/epidemiologia , Animais , Carcinogênese/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Humanos , Neoplasias/etiologia , Jornada de Trabalho em Turnos/efeitos adversos
5.
Front Neuroendocrinol ; 44: 35-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894927

RESUMO

Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Humanos
6.
Eur J Neurosci ; 40(4): 2674-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24893623

RESUMO

Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.


Assuntos
Giro Denteado/fisiologia , Neurogênese/fisiologia , Fotoperíodo , Células-Tronco/fisiologia , Animais , Sobrevivência Celular , Giro Denteado/citologia , Masculino , Peromyscus
7.
Sci Rep ; 14(1): 848, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191908

RESUMO

Despite its demonstrated biological significance, time of day is a broadly overlooked biological variable in preclinical and clinical studies. How time of day affects the influence of peripheral tumors on central (brain) function remains unspecified. Thus, we tested the hypothesis that peripheral mammary cancer tumors alter the transcriptome of immune responses in the brain and that these responses vary based on time of day; we predicted that time of day sampling bias would alter the interpretation of the results. Brain tissues collected at mid dark and mid light from mammary tumor-bearing and vehicle injected mice were analyzed using the Nanostring nCounter immune panel. Peripheral mammary tumors significantly affected expression within the brain of over 100 unique genes of the 770 represented in the panel, and fewer than 25% of these genes were affected similarly across the day. Indeed, between 65 and 75% of GO biological processes represented by the differentially expressed genes were dependent upon time of day of sampling. The implications of time-of-day sampling bias in interpretation of research studies cannot be understated. We encourage considering time of day as a significant biological variable in studies and to appropriately control for it and clearly report time of day in findings.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Viés , Viés de Seleção , Neoplasias Mamárias Animais/genética , Encéfalo , Transcriptoma
8.
Sci Rep ; 14(1): 7760, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565934

RESUMO

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Assuntos
Ritmo Circadiano , Demência Vascular , Animais , Camundongos , Masculino , Feminino , Ritmo Circadiano/fisiologia , Fotoperíodo , Reconhecimento Psicológico , Demência Vascular/etiologia , Cognição
9.
Exp Neurol ; 377: 114796, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677449

RESUMO

Circadian rhythms are endogenous biological cycles that regulate physiology and behavior and are set to precisely 24-h by light exposure. Light at night (LAN) dysregulates physiology and function including immune response; a critical component that contributes to stroke pathophysiological progression of neuronal injury and may impair recovery from injury. The goal of this study is to explore the effects of dim LAN (dLAN) in a murine model of ischemic stroke to assess how nighttime lighting from hospital settings can affect stroke outcome. Further, this study sought to identify mechanisms underlying pathophysiological changes to immune response after circadian disruption. Male and female adult Swiss Webster (CFW) mice were subjected to transient or permanent focal cerebral ischemia, then were subsequently placed into either dark night conditions (LD) or one night of dLAN (5 lx). 24 h post-stroke, sensorimotor impairments and infarct sizes were quantified. A single night of dLAN following MCAO increased infarct size and sensorimotor deficits across both sexes and reduced survival in males after 24 h. Flow cytometry was performed to assess microglial phenotypes after MCAO, and revealed that dLAN altered the percentage of microglia that express pro-inflammatory markers (MHC II+ and IL-6) and microglia that express CD206 and IL-10 that likely contributed to poor ischemic outcomes. Following these results, microglia were reduced in the brain using Plexxikon 5622 (PLX 5622) a CSFR1 inhibitor, then the mice received an MCAO and were exposed to LD or dLAN conditions for 24 h. Microglial depletion by PLX5622 resulted in infarct sizes that were comparable between lighting conditions. This study provides supporting evidence that environmental lighting exacerbates ischemic injury and post-stroke mortality by a biological mechanism that exposure to dLAN causes a fundamental shift of activated microglial phenotypes from beneficial to detrimental at an early time point after stroke, resulting in irreversible neuronal death.


Assuntos
AVC Isquêmico , Microglia , Animais , Microglia/patologia , Microglia/metabolismo , Camundongos , Masculino , Feminino , AVC Isquêmico/patologia , Luz/efeitos adversos , Ritmo Circadiano/fisiologia , Isquemia Encefálica/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia
10.
J Exp Biol ; 216(Pt 14): 2581-6, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23531821

RESUMO

Sleep is restorative, whereas reduced sleep leads to negative health outcomes, such as increased susceptibility to disease. Sleep deprivation tends to attenuate inflammatory responses triggered by infection or exposure to endotoxin, such as bacterial lipopolysaccharide (LPS). Previous studies have demonstrated that Siberian hamsters (Phodopus sungorus), photoperiodic rodents, attenuate LPS-induced fever, sickness behavior and upstream pro-inflammatory gene expression when adapted to short day lengths. Here, we tested whether manipulation of photoperiod alters the suppressive effects of sleep deprivation upon cytokine gene expression after LPS challenge. Male Siberian hamsters were adapted to long (16 h:8 h light:dark) or short (8 h:16 h light:dark) photoperiods for >10 weeks, and were deprived of sleep for 24 h using the multiple platform method or remained in their home cage. Hamsters received an intraperitoneal injection of LPS or saline (control) 18 h after starting the protocol, and were killed 6 h later. LPS increased liver and hypothalamic interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF) gene expression compared with vehicle. Among LPS-challenged hamsters, sleep deprivation reduced IL-1 mRNA levels in liver and hypothalamus, but not TNF. IL-1 attenuation was independent of circulating baseline cortisol, which did not increase after sleep deprivation. Conversely, photoperiod altered baseline cortisol, but not pro-inflammatory gene expression in sleep-deprived hamsters. These results suggest that neither photoperiod nor glucocorticoids influence the suppressive effect of sleep deprivation upon LPS-induced inflammation.


Assuntos
Citocinas/imunologia , Endotoxinas/toxicidade , Regulação da Expressão Gênica/fisiologia , Hidrocortisona/sangue , Phodopus/fisiologia , Privação do Sono/fisiopatologia , Análise de Variância , Animais , Cricetinae , Primers do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Interleucina-1/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Masculino , Phodopus/metabolismo , Fotoperíodo , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Privação do Sono/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Proc Natl Acad Sci U S A ; 107(43): 18664-9, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937863

RESUMO

The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans.


Assuntos
Ritmo Circadiano , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/efeitos da radiação , Obesidade/etiologia , Fotoperíodo , Animais , Índice de Massa Corporal , Modelos Animais de Doenças , Ingestão de Alimentos/psicologia , Ingestão de Energia , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Comportamento Alimentar/efeitos da radiação , Teste de Tolerância a Glucose , Humanos , Masculino , Síndrome Metabólica/etiologia , Camundongos , Atividade Motora , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/psicologia
12.
Biomolecules ; 13(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627234

RESUMO

Circadian rhythms are ubiquitous endogenous rhythms with a period of approximately twenty-four hours [...].


Assuntos
Ritmo Circadiano
13.
Physiol Behav ; 266: 114186, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028499

RESUMO

Physiology and behavior are synchronized to the external environment by endogenous circadian rhythms that are set to precisely 24 h by exposure to bright light early in the day. Exposure to artificial light outside of the typical solar day, such as during the night, may impair aspects of physiology and behavior in human and non-human animals. Both the intensity and the wavelength of light are important in mediating these effects. The present report is the result of an unplanned change in our vivarium lighting conditions, which led to the observation that dim light during the daytime affects body mass similarly to dim nighttime light exposure in male Swiss Webster mice. Mice exposed to bright days (≥125 lux) with dark nights (0 lux) gained significantly less weight than those exposed to bright days with dim light at night (5 lux) or dim days (≤60 lux) with either dark nights or dim light at night. Notably, among the mice exposed to dim daytime light, no weight gain differences were observed between dark nights and dim light at night exposure; however dim light at night exposure shifted food intake to the inactive phase as previously reported. The mechanisms mediating these effects remain unspecified, but it appears that dimly illuminated days may have similar adverse metabolic effects as exposure to artificial light at night.


Assuntos
Ritmo Circadiano , Atividade Motora , Masculino , Camundongos , Animais , Ritmo Circadiano/fisiologia
14.
iScience ; 26(7): 106996, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534143

RESUMO

The structure and function of the cardiovascular system are modulated across the day by circadian rhythms, making this system susceptible to circadian rhythm disruption. Recent evidence demonstrated that short-term exposure to a pervasive circadian rhythm disruptor, artificial light at night (ALAN), increased inflammation and altered angiogenic transcripts in the hippocampi of mice. Here, we examined the effects of four nights of ALAN exposure on mouse hippocampal vascular networks. To do this, we analyzed 2D and 3D images of hippocampal vasculature and hippocampal transcriptomic profiles of mice exposed to ALAN. ALAN reduced vascular density in the CA1 and CA2/3 of female mice and the dentate gyrus of male mice. Network structure and connectivity were also impaired in the CA2/3 of female mice. These results demonstrate the rapid and potent effects of ALAN on cerebrovascular networks, highlighting the importance of ALAN mitigation in the context of health and cerebrovascular disease.

15.
Front Neuroendocrinol ; 32(3): 303-19, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21156187

RESUMO

Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.


Assuntos
Comportamento Animal/fisiologia , Hormônios/metabolismo , Sistema Imunitário/fisiologia , Fotoperíodo , Animais , Metabolismo Energético , Meio Ambiente , Epigênese Genética , Aptidão Genética , Humanos , Melatonina/metabolismo , Fenótipo , Glândula Pineal/fisiologia , Plantas/metabolismo , Estações do Ano
16.
Cerebellum ; 11(4): 982-1001, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22528962

RESUMO

We previously reported motor and non-motor enhancements in a mouse mutant with an inactivated Purkinje cell-specific gene, Pcp2(L7), that encodes a GoLoco domain-containing modulator of Gi/o protein-coupled receptors. Effects included elevated learning asymptote with repeated rotarod training, increased acquisition rate in tone-cued fear conditioning (FC), and subtle male-specific changes in both acoustic startle habituation and pre-pulse inhibition. We have further analyzed this mutant strain this time with a focus on male-female differences, and here we report a sex-dependent anxiety-like phenotype: male mutants are less anxious, and female mutants are more anxious, than same-sex wild types. Similarly, the fear responses measured during the tone in FC acquisition are decreased in male mutants and increased in female mutants relative to same-sex wild types. Overall, the dynamics of both acquisition and extinction of FC is affected in mutants but memory was not affected. In the social realm, compositional analysis of sociability and preference for social novelty data supports that both L7 genotype and sex contribute to these behaviors. These results provide direct evidence of emotional functions of the cerebellum due to the unambiguous cerebellar specificity of Pcp2(L7) expression and the lack of any confounding motor defects in the mutant. We attempt to synthesize these new data with what is previously known both about Pcp2(L7) and about the effects of sex and sex hormones on anxiety and fear behaviors: specifically, L7 is a bidirectional and sex-dependent damper that regulates the amplitude and/or rate of sensorimotor responses, potentially acting as a mood stabilizer.


Assuntos
Comportamento Animal , Cerebelo/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuropeptídeos/metabolismo , Células de Purkinje/metabolismo , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Medo/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neuropeptídeos/genética , Caracteres Sexuais
17.
Artigo em Inglês | MEDLINE | ID: mdl-35101914

RESUMO

Sex as a biological variable is the focus of much literature and has been emphasized by the National Institutes of Health, in part, to remedy a long history of male-dominated studies in preclinical and clinical research. We propose that time-of-day is also a crucial biological variable in biomedical research. In common with sex differences, time-of-day should be considered in analyses and reported to improve reproducibility of studies and to provide the appropriate context to the conclusions. Endogenous circadian rhythms are present in virtually all living organisms, including bacteria, plants, invertebrates, and vertebrates. Virtually all physiological and behavioral processes display daily fluctuations in optimal performance that are driven by these endogenous circadian clocks; importantly, many of those circadian rhythms also show sex differences. In this review, we describe some of the documented sex differences in circadian rhythms.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Masculino , Reprodutibilidade dos Testes , Caracteres Sexuais , Vertebrados
18.
Chronobiol Int ; 39(12): 1674-1683, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36268694

RESUMO

Circadian rhythms are endogenous biological cycles that regulate physiology and behavior for optimal adaptive function and survival; they are synchronized to precisely 24 hours by daily light exposure. Disruption of the daily light-dark (LD) cycle by exposure to artificial light at night (ALAN) dysregulates core clock genes and biological function. Exposure to ALAN has been associated with increased health risks in humans, and elderly individuals are at elevated risk for poor outcome from disease and often experience elevated exposure to ALAN due to increased care requirements. The role of disrupted circadian rhythms in healthy, aged animals remains unspecified; thus, we hypothesized that disrupted circadian rhythms via chronic exposure to dim ALAN (dLAN) impair immune response and survival in aged mice. Twenty-month-old C57BL/6 male and female mice were exposed to 24 weeks of LD conditions or dLAN (5 lux); then, cell-mediated immune response was assessed using a delayed-type hypersensitivity test. Aged female mice exposed to dLAN displayed dysregulated hypersensitivity and inflammation as a measure of cell-mediated immune response and decreased lifespan compared to females housed in dark nights. Nighttime lighting did not affect cell-mediated immune response or lifespan in males but dysregulated body mass and increased adrenal mass after immune challenge after chronic exposure to dLAN. Together, these data indicate that chronic exposure to dLAN affects lifespan in aged females and suggest that females are more susceptible to the detrimental consequences of disrupted circadian rhythms.


Assuntos
Ritmo Circadiano , Luz , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , Lactente , Ritmo Circadiano/fisiologia , Longevidade , Camundongos Endogâmicos C57BL , Fotoperíodo , Imunidade
19.
Chronobiol Int ; 39(4): 535-546, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34894935

RESUMO

Disruption of circadian rhythms has detrimental host consequences. Indeed, both clinical and foundational science demonstrate a clear relationship between disruption of circadian rhythms and cancer initiation and progression. Because timing of food intake can act as a zeitgeber (i.e., entrainment signal) for the circadian clock, and most individuals in the developed world have access to food at all times of the day in a "24/7" society, we sought to determine the effects of timing of food intake on mammary tumor growth. We hypothesized that restricting access to food to during the inactive phase would accelerate tumor growth. Adult female Balb/C mice received a unilateral orthotopic injection of murine mammary carcinoma 4T1 cells into the ninth inguinal mammary gland. Beginning on the day of tumor injection and continuing until the end of the experiment, mice were food restricted to their active phase (ZT12 (lights off)- ZT0 (lights on), inactive phase (ZT0 - ZT12), or had ad libitum access to food. Mice that were food restricted to their inactive phase displayed a significant increase in body mass on days 7 and 14 of tumor growth relative to active phase or ad libitum fed mice. Additionally, mice fed during their inactive phase demonstrated a 20% reduction in food consumption relative to mice fed during their active phase and a 17% reduction in food consumption relative to ab libitum fed mice. Tumor volume was not significantly different between groups. However, food restricting mice to their inactive phase increased mammary tumor growth efficiency (i.e., mg of tumor mass per gram of food intake) relative to mice fed during the active phase and approached significance (p = .06) relative to ad libitum fed mice. To determine a potential explanation for the increased tumor growth efficiency, we examined rhythms of activity and body temperature. Mice fed during the inactive phase displayed significantly disrupted daily activity and body temperature rhythms relative to both other feeding regimens. Together, these data demonstrate that improperly timed food intake can have detrimental consequences on mammary tumor growth likely via disrupted circadian rhythms.


Assuntos
Relógios Circadianos , Neoplasias , Animais , Temperatura Corporal , Ritmo Circadiano , Jejum , Comportamento Alimentar , Feminino , Camundongos
20.
Horm Behav ; 60(5): 520-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21851822

RESUMO

Many psychological disorders comprise a seasonal component. For instance, seasonal affective disorder (SAD) is characterized by depression during autumn and winter. Because hippocampal atrophy may underlie the symptoms of depression and depressive-like behaviors, one goal of this study was to determine whether short days also induce structural changes in the hippocampus using photoperiod responsive rodents--Siberian hamsters. Exposure to short days increases depressive-like responses (increased immobility in the forced swim test) in hamsters. Male hamsters were housed in either short (LD 8:16) or long days (LD 16:8) for 10 weeks and tested in the forced swim test. Brains were removed and processed for Golgi impregnation. HPA axis function may account for photoperiod-related changes in depressive-like responses. Thus, stress reactivity was assessed in another cohort of photoperiod-manipulated animals. Short days reduced soma size and dendritic complexity in the CA1 region. Photoperiod did not induce gross changes in stress reactivity, but an acute stressor disrupted the typical nocturnal peak in cortisol concentrations. These data reveal that immobility induced by exposure to short days is correlated with reduced CA1 cell complexity (and perhaps connectivity). This study is the first to investigate hippocampal changes in the context of short-day induced immobility and may be relevant for understanding psychological disorders with a seasonal component.


Assuntos
Depressão/fisiopatologia , Hipocampo/anatomia & histologia , Fotoperíodo , Animais , Cricetinae , Dendritos/fisiologia , Teste de Esforço/psicologia , Complexo de Golgi , Hidrocortisona/sangue , Masculino , Phodopus , Transtorno Afetivo Sazonal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA