Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plant Dis ; 103(7): 1507-1514, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025904

RESUMO

Spread and in-field spatial patterns of vines infected with grapevine red blotch virus (GRBV) were documented in Oregon vineyards using field sampling, molecular diagnostics, and spatial analysis. Grapevine petiole tissue collected from 2013 to 2016 was tested using quantitative polymerase chain reaction for GRBV. At Jacksonville in southern Oregon, 3.1% of vines were infected with GRBV in 2014, and GRBV incidence reached 58.5% of study vines by 2016. GRBV-infected plants and GRBV-uninfected plants were spatially aggregated at this site in 2015, and infected plants were spatially associated between years 2015 and 2016. In a southern Oregon vineyard near Talent, 10.4% of vines were infected with GRBV in 2014, and infection increased annually to 21.5% in 2016. At Talent, distribution of the infected vines was spatially associated across all years. GRBV infection was highest at Yamhill, in the Willamette Valley, where 31.7% of the tested vines had GRBV infection in 2014. By 2016, 59.2% of the vines tested positive for GRBV. Areas of aggregation increased and were spatially associated across all years. From 2013 to 2015, GRBV was not detected at Milton-Freewater in eastern Oregon. Spatial patterns of GRBV infection support evidence of spread by a mobile insect vector. GRBV is a significant threat to Oregon wine grape production because of its drastic year-over-year spread in affected vineyards.


Assuntos
Geminiviridae , Vitis , Animais , Fazendas , Geminiviridae/fisiologia , Oregon , Doenças das Plantas/virologia , Vitis/virologia
2.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445636

RESUMO

Life history parameters are used to estimate population dynamics, mortality, and reproduction in insects relative to their surrounding environment. For Drosophila suzukii Matsumura (Diptera: Drosophilidae), an invasive agricultural pest, previous studies have estimated net reproductive rate (Ro), generation time (T), and intrinsic rate of population increase (rm). A main limitation is that these estimates were measured under relatively favorable settings, and do not reflect environmental conditions and physiological states encountered during dormancy periods. Therefore, this study investigated the impacts of 1) low temperatures and 2) dietary protein: carbohydrate ratios (P:C) on both survival and fecundity parameters of D. suzukii summer morphs (SM) and postoverwintering winter morphs (WM) over physiological age (degree-days, DD). In both morphs, reproductive rates were higher and lifespan was longer when flies were exposed to low protein (P:C 1:4) or carbohydrate-only diets (P:C 0:1) compared with high protein diets (P:C 1:1). WM had higher reproductive rates and longer generation times than SM on optimal 1:4 diet in all trialed temperatures, but at the lowest temperatures, SM had higher reproductive rates than WM in carbohydrate-only and high protein diets. This likely reflected delayed oogenesis and hindered reproduction after an overwintering period in WM receiving suboptimal diets. Oviposition for SM and WM receiving 1:4 diet commenced from 0 to 100 DD, and peaked between 400 and 500 DD, earlier than flies receiving 0:1 diet. These results suggest that dietary protein has a crucial role in early oogenesis, particularly for postoverwintering WM. The parameters developed here reflect the population dynamics of D. suzukii before and after the crop growing season, an essential time for population buildup, survival, and early and late host infestation.


Assuntos
Temperatura Baixa , Dieta , Drosophila/fisiologia , Fertilidade/fisiologia , Animais , Drosophila/anatomia & histologia , Análise de Sobrevida
3.
BMC Ecol ; 16: 11, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001084

RESUMO

BACKGROUND: As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. RESULTS: We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. CONCLUSIONS: To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.


Assuntos
Aclimatação , Drosophila/fisiologia , Estações do Ano , Animais , Temperatura Baixa , Feminino , Controle de Insetos , Masculino , Fenótipo
4.
J Econ Entomol ; 108(3): 1156-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470241

RESUMO

Brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a severe economic pest of growing importance in the United States, Canada, and Europe. While feeding damage from H. halys has been characterized in tree fruit, vegetables, and agronomic crops, less is known about the impacts of stink bugs on small fruits such as blueberries. In this study, we examined H. halys feeding on two representative early and late ripening blueberry cultivars in Oregon and New Jersey. This research examined how different densities of H. halys confined on blueberry clusters for week-long periods affected fruit quality at harvest. After fruit were ripe, we stained and quantified the number of salivary sheaths on berries as an indication of feeding pressure. Feeding by H. halys damaged the fruits by causing increased levels of external discoloration, and internal damage in the form of tissue necrosis. Exposure of berries to H. halys was also associated with decreasing berry weights and lower soluble solids in fruits. However, the different cultivars did not respond consistently to feeding pressure from H. halys. Weekly variability in feeding pressure of two of the cultivars as quantified by the number of stylet sheaths per berry was largely accounted for by environmental variables. We conclude that H. halys does have potential to severely damage blueberries and may become an important economic pest. Characterization of damage is important because correct identification of insect damage is key for successful management.


Assuntos
Mirtilos Azuis (Planta)/fisiologia , Cadeia Alimentar , Hemípteros/fisiologia , Animais , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Comportamento Alimentar , Hemípteros/crescimento & desenvolvimento , New Jersey , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oregon
5.
Pest Manag Sci ; 80(2): 708-723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770414

RESUMO

BACKGROUND: Drosophila suzukii is a significant invasive pest that has caused high management costs and economic losses for blueberry growers in the United States. The status quo control strategy commonly used by growers is to apply pesticides proactively and frequently to reduce infestation. Recent studies have shown that the calendar-based spraying strategy might be unsustainable in the long term, making the reduction of pesticide reliance a top priority for the berry industry. Incorporating pest monitoring into the control strategy could be an option to improve efficiency while reducing pesticide usage. This study assesses the economic implications of monitoring-based control strategies compared to calendar-based spraying control strategies for organic blueberry production in Oregon. We combine a D. suzukii population model into the economic simulation framework, evaluate two monitoring methods (adult trapping and fruit sampling), and identify the profit-maximizing control strategy under different scenarios. RESULTS: In the baseline scenario, control strategies that incorporate fruit sampling exhibit the highest average profits. Although the status quo control strategy (spraying every 3 days) generates higher average revenue than monitoring-based strategies, the cost from the higher number of pesticide application offsets the returns. CONCLUSION: This study uses a novel bioeconomic simulation framework to show that incorporating fruit sampling can be a promising tool to reduce pesticide reliance while controlling D. suzukii infestation. These findings provide clearer information on the economic viability of using monitoring-based pest control strategies in organic berry production, and the assessment framework sheds light on the economics of pest management. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Praguicidas , Animais , Drosophila , Controle de Insetos/métodos , Agricultura , Frutas
6.
Insects ; 14(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36975933

RESUMO

Brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a generalist pest that causes serious injury to a variety of crops around the world. After the first detection in the USA, H. halys became a serious threat to growers resulting in significant crop damage. Understanding the effect of temperature on H. halys development will help to achieve successful control by predicting the phenological timing of the pest. Here, life table parameters (survival, development, reproduction, and daily mortality) of H. halys were evaluated for New Jersey and Oregon populations in the US. Parameters were determined from field-collected and laboratory-reared individuals. The results indicated that New Jersey populations had higher levels of egg-laying than Oregon populations and exhibited higher and earlier fecundity peaks. Survival levels were similar between populations. Linear and nonlinear fit were used to estimate the minimum (14.3 °C), optimal (27.8 °C), and maximum (35.9 °C) temperatures where development of H. halys can take place. An age-specific fecundity peak (Mx = 36.63) was recorded at 936 degree days for New Jersey populations, while maximum fecundity (Mx = 11.85) occurred at 1145 degree days in Oregon. No oviposition was recorded at the lowest (15 °C) or highest (35 °C) trialed temperatures. Developmental periods increased at temperatures above 30 °C, indicating that such higher temperatures are suboptimal for H. halys development. Altogether the most optimal temperatures for population increase (rm) ranged from 25 to 30 °C. Survival rates of H. halys at suboptimal low temperatures of 8 °C (i.e., 61%) is comparable to previous reports. The present paper provides additional data and context from a range of experimental conditions and populations. Such temperature-related H. halys life table parameters can be used to provide determine the risk to susceptible crops.

7.
J Econ Entomol ; 116(3): 899-908, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37155341

RESUMO

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a key pest of soft-skinned fruit such as blackberry and blueberry. Differing seasonal spray regimes are expected to have variable effects on D. suzukii populations. Semi-field cage trials were performed at three locations in the United States (Georgia, Oregon, and North Carolina) on blueberry and blackberry crops to evaluate this hypothesis. Insecticides with different efficacy rates (ZC - zeta-cypermethrin, SPI - spinetoram, CYAN - cyantraniliprole) were applied during field experiments conducted within large cages. Treatment schedules consisted of two insecticide applications which performed over three weeks. Seasonal treatment schedules were applied in the following order: ZC-CYAN and CYAN-ZC in rabbiteye and highbush blueberry with the addition of a ZC-SPI treatment applied in blackberry. In addition, a population model was applied to simulate the relative efficacy of the insecticide schedules in Oregon on D. suzukii population model based on previously published efficacy, biological, and weather parameters. Overall, all schedules resulted in reduced D. suzukii infestation compared to untreated control (UTC) treatments, with statistical differences in all three locations. The numerically lower infestation was found in some cases in ZC-CYAN schedule. Population modeling conducted exclusively for blueberry, and the simulations indicated no discernible differences between the two respective schedules (ZC-CYAN vs CYAN-ZC). The present study demonstrates that seasonal infestation of D. suzukii could be suppressed irrespective of application order. Additional research is required to assess the optimal timing and sequence of insecticide applications for controlling seasonal populations of D. suzukii in fruit crops. Such information could be invaluable for growers who are seeking to strategize their insecticide applications.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Rubus , Animais , Drosophila , Controle de Insetos/métodos , Oregon , Frutas , Produtos Agrícolas
8.
Front Insect Sci ; 3: 1141853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469503

RESUMO

The invasion of Drosophila suzukii, spotted-wing drosophila, across Europe and the US has led to economic losses for berry and cherry growers, and increased insecticide applications to protect fruit from damage. Commercial production relies heavily on unsustainable use of conventional toxic insecticides. Non-toxic insecticide strategies are necessary to alleviate the disadvantages and non-target impacts of toxic conventional insecticides and improve Integrated Pest Management (IPM). A novel food-grade gum deployed on dispenser pads (GUM dispensers) was evaluated to mitigate D. suzukii crop damage in five commercial crops and nine locations. Trials were conducted at a rate of 124 dispensers per hectare in cherry, wine grape, blueberry, raspberry, and blackberry in California and Oregon, USA during 2019 and 2020. The majority of trials with the food-grade gum resulted in a reduction of D. suzukii egg laying in susceptible fruit. In some cases, such damage was reduced by up to 78%. Overall, results from our meta-analysis showed highly significant differences between GUM treatments and the untreated control. Modeling simulations suggest a synergistic reduction of D. suzukii damage when used in combination with Spinosad (Entrust SC) insecticide. These data illustrate commercial value of this tool as a sustainable alternative to manage D. suzukii populations within a systems approach.

9.
J Econ Entomol ; 105(4): 1350-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928316

RESUMO

Drosophila suzukii Matsumura (Diptera: Drosophilidae), a recent invasive pest of small and stone fruits, has been detected in more than half of the U.S. states, and in Canada, Mexico, and Europe. Upon discovery, several different trap designs were recommended for monitoring. This study compared the trap designs across seven states/provinces in North America and nine crop types. Between May and November 2011, we compared a clear cup with 10 side holes (clear); a commercial trap with two side holes (commercial); a Rubbermaid container with mesh lid and rain tent (Haviland), and with 10 side holes and no tent (modified Haviland); a red cup with 10 side holes (red); and a white container with mesh lid and rain tent (Van Steenwyk). Although fly catches among traps varied per site, overall, the Haviland trap caught the most D. suzukii, followed by the red, Van Steenwyk, and clear trap. The modified Haviland and commercial trap had low captures. Among five crop types in Oregon, a clear cup with mesh sides (Dreves) also was tested and caught the most flies. Traps with greater entry areas, found in mesh traps, caught more flies than traps with smaller entry areas. In terms of sensitivity and selectivity, traps that caught more flies likewise caught flies earlier, and all traps caught 26-31% D. suzukii out of the total Drosophila captured. Future trap improvements should incorporate more entry points and focus on selective baits to improve efficiency and selectivity with regard to the seasonal behavior of D. suzukii.


Assuntos
Drosophila , Controle de Insetos , Animais , América do Norte
10.
Exp Appl Acarol ; 58(1): 1-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22527839

RESUMO

The beneficial mite Typhlodromus pyri is a key predator of grapevine rust mite Calepitrimerus vitis in Pacific coastal vineyards. Rust mite feeding has been associated with damage such as stunted, deformed shoot growth and reductions in fruit yield. The life history traits of T. pyri were assessed at seven constant temperatures (12.5, 15, 17.5, 20, 25, 30 and 35 °C) to determine population parameters providing data to better predict biological control of C. vitis populations by T. pyri in vineyards. Successful development from the egg to adult stage was observed at temperatures ranging from 15 to 30 °C. Constant exposure to 12.5 and 35 °C resulted in 100 % mortality in immature T. pyri. Developmental times, fecundity and longevity were highest at 25 °C. The estimated minimum and maximum developmental thresholds were 7.24 and 42.56 °C, respectively. Intrinsic rate of increase (r ( m )) was positive from 15 to 30 °C indicating population growth within this range of temperatures. Net reproductive rate and intrinsic rate of increase were greatest at 25 °C. These developmental parameters can be used to estimate population growth, determine seasonal phenology and aid in conservation management of T. pyri. Results presented in this study will aid in evaluating the effectiveness of T. pyri as a key biological control agent of C. vitis during different periods of the growing season in Pacific Northwest vineyards.


Assuntos
Ácaros/crescimento & desenvolvimento , Ácaros/fisiologia , Controle Biológico de Vetores/métodos , Comportamento Predatório/fisiologia , Temperatura , Vitis/parasitologia , Agricultura , Animais , Feminino , Larva , Masculino , Ninfa , Oregon , Óvulo/fisiologia , Doenças das Plantas/parasitologia , Dinâmica Populacional , Reprodução
11.
Environ Entomol ; 51(4): 772-779, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35834241

RESUMO

Surface wax and other cellular building blocks play an important role in preserving fruit integrity from biotic and abiotic adversities. Huge energy expenses are made by plants to place these protective compounds onto the epidermal cuticle. Sprayable plant and fruit coatings have been developed to protect plant tissues from environmental stresses, pathogens, and arthropods. The aim of this study was to determine if an experimental cuticle supplement containing waxes can affect fruit quality parameters such as firmness and size of various crops. Cherry, blueberry, and winegrape plants treated with the cuticle supplement showed significant increases in berry firmness ranging from 4.6 to 11.6%. No quality benefits were however observed on blackberry. Cuticle supplement applications did not significantly affect berry size. Laboratory trials resulted in a 54% mean reduction in a model pest insect i.e., Drosophila suzukii egg laying on blueberry. Short-duration field trials over 72 ±â€…2 to 96 ±â€…2 h on commercial-standard blueberry bushes resulted in 50-93.4% reductions of D. suzukii damage. Longer-term field trials on cherry and blueberry challenged with egg-laying D. suzukii showed reductions of damage ranging from 45 to 95%, up to 30 d after initial cuticle supplement applications. These results indicate that the cuticle supplement significantly alters berry firmness and reduces D. suzukii damage under commercial production conditions. One factor that may contribute to this reduction includes improved fruit quality parameters. The current work serves to expand integrated pest management options to control D. suzukii populations in commercial field settings.


Assuntos
Produtos Agrícolas , Drosophila , Frutas , Animais , Mirtilos Azuis (Planta) , Controle de Insetos/métodos , Rubus
12.
Environ Entomol ; 51(2): 413-420, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35137017

RESUMO

Drosophila suzukii (Matsumura), spotted-wing drosophila, is a major pest in small fruit crops including highbush blueberry. Controlling D. suzukii is challenging and chemical control is the main method to manage D. suzukii populations. Growers have expressed interest in using micro-sprinklers as an alternative method to apply insecticides. The current study aimed to evaluate if insecticide applications using micro-sprinklers can be used as an alternative method to protect the fruit from D. suzukii egg-laying. Modeling was used as an additional tool to parameterize the relative insecticide efficacy on oviposition. Field measurements of different treatments were conducted over periods of eleven days on commercial-standard highbush blueberry. Cyantraniliprole and spinetoram were applied using both a micro-sprinkler and a backpack sprayer. Treatments of Chromobacterium subtsugae and zeta-cypermethrin were only applied using a backpack sprayer. Both cyantraniliprole and spinetoram treatments resulted in moderate suppression of D. suzukii egg-laying. No statistical significance was found between micro-sprinkler and backpack sprayer applications for these two insecticides. Zeta-cypermethrin treatments using a backpack sprayer resulted in the most significant suppression of D. suzukii egg-laying over eleven days, while C. subtsugae was less effective at preventing D. suzukii egg-laying. Modeling simulations estimate the impact of the control methods on D. suzukii populations dynamics and simulation outputs indicated that backpack sprayers reduced D. suzukii populations at more pronounced levels compared to micro-sprinkler applications. The present study indicates that there is an underlying value of micro-sprinkler systems as an alternative and rapid spray application technique to help suppress D. suzukii pest populations during high-pressure periods in highbush blueberry production.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Animais , Drosophila/química , Feminino , Frutas , Controle de Insetos/métodos , Inseticidas/farmacologia , Oviposição/fisiologia
13.
J Econ Entomol ; 115(6): 1995-2003, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36209398

RESUMO

Spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of thin-skinned fruits in the United States. Monitoring traps are an integral part of SWD integrated pest management, allowing early detection and timely management of this pest. An ideal monitoring trap should be easy to use, effective in capturing SWD, sensitive and selective to male SWD which are easy to identify due to their spotted wings, and able to predict fruit infestation from trap captures. Deli-cup-based liquid traps (grower standard), which make in-situ observations difficult, were compared with red-panel sticky traps, both baited with commercial lures (Scentry, Trécé Broad-Spectrum (BS), and Trécé High-Specificity (HS)), across several US states in blueberries (lowbush and highbush), blackberry, raspberry, and cherry crops during 2018 and 2021. Results showed that red-panel traps effectively captured SWD, were able to detect male SWD early in the season while also being selective to male SWD all season-long, and in some cases linearly related male SWD trap captures with fruit infestation. Scentry and Trécé BS lures captured similar numbers of SWD, though Trécé BS and Trécé HS were more selective for male SWD in red panel traps than liquid traps in some cases. In conclusion, due to its ease of use with less processing time, red-panel traps are promising tools for detecting and identifying male SWD in-situ and for predicting fruit infestation. However, further research is needed to refine the trap captures and fruit infestation relationship and elucidate the trap-lure interactions in berry and cherry crops.


Assuntos
Mirtilos Azuis (Planta) , Rubus , Masculino , Animais , Drosophila , Frutas , Controle de Insetos/métodos , Produtos Agrícolas
14.
J Econ Entomol ; 104(3): 970-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21735918

RESUMO

Laboratory bioassays were conducted to evaluate the effects of six vineyard pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae), a key predator of the mite Calepitrimerus vitis Nalepa (Acari: Eriophyoidae), in Pacific coastal vineyards. Materials tested were whey powder, 25% boscalid + 13% pyraclostrobin (Pristine), 40% myclobutanil (Rally), micronized sulfur (92% WP), 75% ethylene bisdithiocarbamate (mancozeb; Manzate), and 91.2% paraffinic oil (JMS Stylet), all applied at three concentrations. Pesticide dilutions were directly sprayed onto T. pyri adult females and juveniles, and each treatment was assessed to determine effects on direct mortality and fecundity. Five of the six pesticides tested resulted in < 50% mortality to adult and juvenile T. pyri for all concentrations 7 d after treatment. Paraffinic oil treatments displayed direct mortality > 50% for adult and juvenile assays and resulted in significantly higher mortality. Sublethal effects were more pronounced than acute pesticide toxicity, particularly in juvenile mite bioassays. Significant decreases in fecundity were detected in the sulfur and mancozeb treatments compared with the control in juvenile tests. The relative percentage of fecundity reduction for juvenile mites was highest when applying mancozeb (> 70%), sulfur (> 25%), or myclobutanil (> 20%). Adult mites displayed the greatest reductions in fecundity from applications of paraffinic oil (> 20%) or mancozeb (> 15%) treatments. Boscalid (+ pyraclostrobin) and whey displayed the least effect on fecundity across all bioassays. These results can be used to develop management guidelines in vineyard pest management practices to help conserve and enhance predatory mite populations.


Assuntos
Fungicidas Industriais/toxicidade , Estágios do Ciclo de Vida , Ácaros/fisiologia , Testes de Toxicidade , Animais , Feminino , Fertilidade , Masculino , Ácaros/crescimento & desenvolvimento , Mortalidade , Controle Biológico de Vetores , Vitis
15.
Sci Rep ; 11(1): 6182, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731743

RESUMO

The olive fruit fly, Bactrocera oleae, has been a key pest of olives in Europe and North America. We conducted the largest exploration for parasitoids associated with the fly across Sub-Saharan Africa (Kenya, Namibia, and South Africa) including some of the fly's adjoining regions (Canary Islands, Morocco, Réunion Island and Tunisia). From Sub-Saharan regions, four braconids were collected: Bracon celer, Psytallia humilis, P. lounsburyi, and Utetes africanus. Results showed that their regional dominance was related to climate niches, with P. humilis dominant in hot semi-arid areas of Namibia, P. lounsburyi dominant in more tropical areas of Kenya, and U. africanus prevalent in Mediterranean climates of South Africa. Psytallia concolor was found in the Canary Islands, Morocco and Tunisian, and the Afrotropical braconid Diachasmimorpha sp. near fullawayi on Réunion Island. Furthermore, we monitored the seasonal dynamics of the fly and parasitoids in Cape Province of South Africa. Results showed that fruit maturity, seasonal variations in climates and interspecific interactions shape the local parasitoid diversity that contribute to the low fly populations. The results are discussed with regard to ecological adaptations of closely associated parasitoids, and how their adaptations impact biocontrol.


Assuntos
Himenópteros/classificação , Controle Biológico de Vetores/métodos , Tephritidae/parasitologia , África Subsaariana , Animais , Olea
16.
Insects ; 12(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450937

RESUMO

The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is an invasive alien species in Europe and the Americas, where it is a severe pest of horticultural crops, including soft fruits and wine grapes. The conventional approach to controlling infestations of SWD involves the use of insecticides, but the frequency of application for population management is undesirable. Consequently, alternative strategies are urgently needed. Effective and improved trapping is important as an early risk detection tool. This study aimed to improve Droskidrink® (DD), a commercially available attractant for SWD. We focused on the chemical and behavioral effects of adding the bacterium Oenococcus oeni (Garvie) to DD and used a new trap design to enhance the effects of attractive lures. We demonstrate that microbial volatile compounds produced by O. oeni are responsible for the increase in the attractiveness of the bait and could be later utilized for the development of a better trapping system. Our results showed that the attractiveness of DD was increased up to two-fold by the addition of commercially available O. oeni when combined with an innovative trap design. The new trap-bait combination increased the number of male and especially female catches at low population densities.

17.
Insects ; 12(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671153

RESUMO

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.

18.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34599814

RESUMO

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Assuntos
Drosophila , Metagenômica , Animais , Drosophila/genética , Frutas , Marcadores Genéticos , Genômica , Estados Unidos
19.
J Econ Entomol ; 114(5): 1950-1974, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516634

RESUMO

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.


Assuntos
Drosophila , Inseticidas , Animais , Frutas , Controle de Insetos
20.
J Econ Entomol ; 103(2): 416-22, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429457

RESUMO

Filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae), is a key insect pest associated with hazelnuts, Corylus avellana L. (Fagales: Betulaceae), in North America. This study investigated the feasibility of entomopathogenic nematodes as an alternative strategy for filbertworm control. Laboratory and field experiments were conducted between October 2007 and May 2008 in Benton County, OR, to evaluate the ability of the nematode Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) to infect filbertworm larvae and pupae. The susceptibility of larvae with and without hibernacula as well as pupae to S. carpocapsae was tested in laboratory bioassays using nematode concentrations between 40 and 200 infective juveniles (IJs) per cm2. Percentage of nematode infection was not significantly affected by the presence of hibernacula (infection range, 90-92%) compared with larvae without hibernacula (80-95%), or by pupal stage (50-75%) compared with larvae (65-75%). In additional field trials, the effect of nematode rate, water application rate, and orchard floor cover on nematode efficacy was determined in October 2007 and May/June 2008. Sentinel filbertworm larvae in plots with either bare soil or debris (leaves, twigs, husks, and blank nuts) were treated with S. carpocapsae at rates ranging from 40 to 150 IJs per cm2 applied in 75 or 190 ml/m2 water. Average filbertworm mortality ranged from 2 to 11% and from 50 to 78% in October and May, respectively. Larval mortality increased with increasing nematode concentration, but was not significantly affected by water application rate or orchard floor cover. Our experiments suggest that S. carpocapsae can play a role in the control of filbertworm larvae overwintering on the orchard floor.


Assuntos
Mariposas/parasitologia , Nematoides/fisiologia , Controle Biológico de Vetores , Estações do Ano , Animais , Betulaceae/parasitologia , Larva/parasitologia , Chuva , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA